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A Study of the Free Energy of the Lenz-Ising Model
Using the Cluster Variation Method of Morita

CHAPTER I

CLUSTER VARIATION METHOD
Objectives of This Work

The purpose of this work can be described by
considering these answers to the following questions.
(1) What are we studying? The free energy -f the Lenz-Ising
model will be examined. (2) Why are we sti.ying this model?
We are interested in obtaining a method that will permit the
calculation of the free energy for systems of interacting
particles. The Lenz-Ising model is the simplest of all the
models of interacting particles. No exact solutions in
three dimensions for arbitrary T,B yet exist. (3) How shall
we study this model? >The Morita Cluster Variation Method
(CVM) will be used to calculate an approximate value for the
free energy of this model. (4) Why do we use this method?
Variational methods have a track record as a superior
approximation method. The Morita Variational Method has
been found to behave strangely; we wish to resolve this
strangeness.

In addition to obtaining answers to the above
questions, this work will assist in gaining insight into the
phase transitions exhibited by various systems at a critical

temperature peculiar to each system. Examples of phase

Manuseript approved July 28, 1987.



changes are the transition from a non-ferromagnetic to a
ferromagnetic state in Fe and Ni i.e. the long range
ordering that causes the material to become magnetic. Other

examples are a lattice gas and a binary alloy such as Cu-Zn.

Application of the CVM to Calculate
the Free Energy of the Lenz-Ising Model

One way to sthdy the behavior of an N-particle
system is to analyze this behavior into the behavior of the
N 1-particle subsystems, the NX(N-1)/2 2-particle
subsystems, the N¥(N-1)%x(N-2)/(3!) 3-particle subsystems,
and so on. This method replaces the study of one object
--the N-particle system--by the study of 2N-1 objects. Why
would one do this?

One always does this for systems whose particles
(1) do not interact with each other whence, the system’s
behaviors are entirely determined by the N l-particle
properties and (2) are all similar in their properties,
whence, all N l-particle properties are the same. Then this
approach replaces the study of an N-particle system by a
l-particle system. Examples of this approach include the
standard studies of the ideal classical and quantal gases,
and the ideal paramagnet.

This approach has been extended to include those
systems of interacting particles for which "normal
coordinates" have been located, coordinates in which there

are no interactions. The main example here is the set of



vibrations of lattice ions in the harmonic approximation,
which are replaced by non-interacting "quasiparticles”. 1In
this case, however, the l-quasiparticle properties are not
all the same; each class must be treated individually, and
the final results obtained by summation.

However, arguments that "only small subsystems are
important” are rarely rigorous for non-ideal systems. Nor
do all of these sorts of arguments include estimates of the
errors made in ignoring the remaining (enormously many)
subsystems. Further, it is often difficult to see how to
improve a treatment of this type, which might be promising,
but not quite good enough. These difficulties all come from
the same sources:

1. +the choice of which subsystems are included in the
study is usually made on an intuitive basis, and not on the
basis of a general principle, and i

2. 1ignored subsystems are not explicitly considered at
all, so that it is difficult to judge the error that
ignoring them incurs, or how to include them in a better
approximation.

The usual criterion for including subsystems is that
their particles are all physically close, and in intense
interactions; subsytems whose particles are all distant, and
not interacting, are usually ignored. This is why the

systems studied are often called "clusters"; i.e. a number

of similar things in close proximity, somewhat separate from



other things. There does not seem to be a common name for
particles that are not parts of clusters. That is, common
language reflects the procedure sketched above: we know how
to treat N-particle systems that obviously separate into
essentially independent subsystems (clusters), but we have
difficulty when this separation is not perfect.

T. Morita{l] has presented a formalism for the
equilibrium statistical mechanical study of N-particle
systems in which all 2N subsytems explicitly appear.

One then makes an explicit choice as to which will be
retained and which will be ignored in further study. This
leads to an approximate expression for the free energy of
the N-particle system in terms of quantities related to the
retained subsytems[2-4]. Minimizing this approximate freé
energy by varying these quantities:

1. gives an estimate of the exact equilibrium free
energy , and

2. gives estimates for all equilibrium thermal
behaviors of the system.

It had been thought that it gave an upper bound to

the free energy -- we now know that this is wrong!

There is only one sort of approximation involved in
this procedure: the choice of which subsystems to retain for
further consideration, and which toc ignore. Many other
strategies require a series of nested approximations; 1t is

frequently difficult to determine their relative affects on



the accuracy of the result. We now know that Morita’s
method is also of this uncontrolled type!

Morita’s method can be systematically improved by
retaining previously ignored subsystems. Since these
explicitly enter the original expression for the free
energy, it is possible to form some estimate of their
importance. It is easy to incorporate any "“physical
intuitions" one may have as to the importance of certain
clusters.

Morita has called his procedure the CLUSTER VARIATION
METHOD. We shall present it by defining a "cluster"” in a
general way, one that does not rely on some particular
attribute such as physical proximity. We shall restrict
ourselves to qlassical systems, and we shall suppose that
the particles are arranged on a crystal lattice. Then we
shall define the microstates and the macrostates of
clusters, and then distinquish between cluster functions
and cluster quantities. We shall introduce the
distinction between extrinsic and intrinsic variables,
recall the usual development of the Hamiltonian into a
series of intrinsic terms, and exhibit Morita’s novel
development of the entropy into such a series. We exhibit
the free energy of the system as a sum of a series of
intrinsic terms, each due to a particular cluster. This
series is exact, but, as it contains 2N -1 terms, it is

too difficult for direct calculation of results for



macroscopic systems. But this series is ideal as a starting
point for approximations -- one partitions the set of
clusters into those which one will retain in subsequent
work, and those which one will ignore, and then deletes from
the sum all the terms relating to ignored clusters. In this
work the truncated expansions of the free energy are also
called approximations. Thus the expansion retaining only
the first term is called the first approximation and the
expansion retaining only the first and second terms is
called the second approximation and so on. In this work the
free energy will be calculated for the first through the
fourth approximation using the Morita expansion.

The calculation of the free energy using these
concepts can be outlined as follows. The Helmholtz free
energy of the Lenz-Ising model[5] is expressed as a function
of its macrostate, F = F(Po), for the first through the
fourth approximation using the Morita expansion. For each
approximation, that macrostate Po for which the free energy
is stationary is found, using either the calculus methods or
the Simplex algorithm[6]. The stationary free energy is
obtained with the calculus methods by setting the first
derivative of F to zero:(§F/5Po)po = 0 and determing the
mini-max nature of the stationary state Po with the second
derivative. For the higher approximations the Simplex
algorithm is used to find the stationary free energy.

The method can be summarized as: Write the free



energy (using the Hamiltonian) for the Lenz-Ising model
using the Morita cluster expansion and minimize it.
Remembering that the equilibrium free energy is the one
which is the least of all possible free energies (F), the
minimization will give two results: (1) the equilibrium
macrostate Po, and (2) the equilibrium free energyy Fo =
F(Po). This method is completely analogous to the gquantum
mechanics procedure: minimizing the expectation of the
energy <E> = (psi,Hpsi) gives not only the correct ground
state energy of the system Eo but also the correct ground
state psio.

The results for the Lenz-Ising model in the presence
of a magnetic field will be calculated with the Morita method
and compared with exact calculations for systems which contain

only N=1,2,3,4 particles (see Chapter III).

Boltzmann, Gibbs, Morita

Boltzmann expressed the entropy of composite systems
whose sub-systems do not interact as[7],
S8 = -kBEi=1Ntri(1)Pi(1)1nPi(1l)
where ke 1is Boltzmann’s constant
tri({l) is a (generalized) summation over all the
microstates of the ith sub-system,
Pi(1) is_-the probability law for the microstates of
the ith sub-system, that is, Pi(l) is the
MACROSTATE of the ith SUB-SYSTEM.

Later this was extended by Gibbs{8] to calculate the



entropy for composite systems with arbitrarily interacting
subsystems as,
SG = kstr{NM)P(N) InP(N)
where,
tr(N) is a (generalized) sum over the microstates
of the composite system,
P(N) is the probability law for the macrostates
of the composite system, that is, P(N) is the
MACROSTATE of the COMPOSITE SYSTEM.

For a composite system of many interacting particles
the calculation of S¢ is prohibitively difficult. Morita
expresses the total or extrinsic entropy of the composite
system as the sum of the entropies associated with each
cluster of the composite system. In the cluster expansion
he refers to the extrinsic entropy of the complete system as
given by,

Se¢ = S(N)extrinsic = §7(1)intrinsic + S“(Z)intfinsic

+ ...87(N)int.

where, S™(1) is the intrinsic entropy of all particles
taken one at a time (singlets) with no interaction between
the particles and would be the same as Boltzmann’s SB.
Therefore, SB = S™(1) . The next term S7(2) is the
intrinsic entropy of a pair of interacting particles and
then S™(3) is the intrinsic entropy of a triple of
interacting particles and so on. This resolution of the
entropy also clarifies the relation of Sé¢ and SB since we
could write the expansion as

S(N) = S = S + S7(2) + 87(2) + §7(3) + ... S7(N).

If there are no correlations among the partfcles, i.e., if



P(N) = Ei=1NP(1)j,
then S(n) = 0 for each n > 1,
and S¢ = SB.
Then Gibbs' entropy reduces to Boltzmann's entropy. If
there are interactions among subsystems (particles), then Se
will differ from SB.
The complete Morita expansion for the free energy
(F) is exact but typically we only use the first few terms.
We refer to the terms as clusters or approximations i.e., 1lst
approximation or l-cluster etc.
Morita decomposes a system of N particles into the
collection of all subsets of these particles:
"{-clusters" are sets, each containing 1 particle; there
are N of these.
"2-clusters" are sets, each containing 2 particles; there
are N(N-1)/2 of these.
"n-clusters"” are sets, each containing n particles; there

are N!/(N-n)!n! of these.

The entire system, then is "the N-cluster”; there is
one of these. We could use the familiar notation for
"combinatorial factor™:

Cn(N) = N!/(N-n)!n!

There are 2N-1 clusters in all, for a system of N particles.



Any particular n-cluster is labeled by the particles it

contains:
C{n)i1,i2,13,...4n. The microstate of the n-cluster
Cln)it,...,in is Mni1,...,in = (Mit,...Hin). The
microstate of the ith particle is Mi; the microstate of
the whole system is ¢#N = (W1,¥2, ... HN). The
macrostate of the whole system is P(N) = probability of
each value of ¢¥N. The macrostate of an n-cluster is
P(n)j1,...in = ZP(N) where sigma is

summed over all the microstates of the particles not
in the n-cluster.

The following approximations from Morita’s expansion
for the free energy are the expressions that we will
minimize. Only the first two approximations are shown here.

First Approximation (first term) (see also p.41,68)

This first term in the Morita cluster expansion,

known as the first approximation, is the free energy for
single clusters-one particle at a time, with no interaction
between clusters. All correlations at the pair level and up
are ignored.
F=0-TS
U = <\

H = -Po(81i=1Nxi )B - %J(Bi=1Nx12)2Z
U = N(-LHoBx-%ZJIx2)

temperature

where F = free energy T

8]

entropy

internal energy S

10



Z = coordination numberx B = external magnetic field

H = Hamiltonian J = exchange integral
X = magnetization 40 = magnetic moment
per particle x2 = interaction between n.n.
(see p.48)
¥Z is the number of n.n. : Z = 2 in one dimension
n.n. = nearst neighbors Z = 4 in 2-dim (square lattice)
Z = 12 in 3-dim

In this study of the free energy using the Morita
cluster expansion the results will be obtained for an FCC
lattice[9]. A unit cell of an FCC lattice is shown in Fig.1l.

The Morita expansion for only the first term 1is,

S(N) = §7(1)
where
ST(1) = &(1) = Z[all singlets]S(1)i
and S(1)i = kptr(1)iP(1)ilnP(1l)i is the entropy of
each single subsystem (or particles) and S(1) is the entropy
of all the N subsystems, each taken one at a time, so that
there are no interactions among the systems, and S7(1) =

S8(1) is the INTRINSIC entropy of these NONINTERACTING
subsystems.

S

-keN[%(1+x)1In(.) + %(1-x)1n(.)]
F

1]

N{-MoBx-%ZJx2 + kaT[}%(1l+x)In(.)+k(1-x)1n(.)]}
or F/NkeT = @F/N = -(PoB/keT)x - (Z2Jx2/2ksT)
+ [(B(1+x)In(.)+%(1-x)1n(.)]
When the factor that precedes the natural log is repeated as

its function then the notation 1n(.) is used.

11



Fig. 1. THE UNIT CELL FOR A FACE CENTERED CUBIC (FCC)
LATTICE. THE NUMBER OF NEAREST NEIGHBORS IS 12.

12



§ = AF/N = -(MolB)x - (4JZ)x2 + [}%(1+x)1n(.)+%(1-x)Iin(.)]
Using a reduced temperature Tr an alternate form can be
obtained (#=1/ks8T)

Tr = k8T/J = 1/6J

Then MPoB/keT = WoB/ksT*J/J = WoB/JTr = Br /T

where Br = poB/J

8 = =(Br /Tr)x - (Z/2Tr )x2 + %(1l+x)In(.) + %(1-x)1n(.)
For Br =0
8 = —(Z/2Tc)x2 + %(1+x)1In(.) + %(1-x)1n(.)

We find the "best" values for x by minimizing &.

0 = d8/dx = -(Z/Tr)x + %1In%(1l+x) - %ln¥k(1l-x)
= =(2/Tc)x + %In[(1+x)/(1-x)]
x = %(Tr/Z2)In[(1+x)/(1-x)]

Second Approximation (second term) or 2-clusters
+ l-cluster
The second approximation is the sum of the first term
(first approximation) plus the 2-cluster term of
Morita’s expansion,
S(N) = S™(1) + G~(2)
where

ST(2)

£(all pai?s)S”(Z)i,j

and S7(2)i,; = 8(2)i,j - 87(1)i - §7(1);j is the INTRINSIC
entropy for subsystems of pairs of particles S57(1)i and
S7(1);, including any interactions they may have, and
S(2)i,; = -kBtr(2)i, jP(2)i, j1lnP(2)i,j is the entropy

of S7(1)i and §7(1); including interactions. The entropy

13



due only to the single particles S$7(1) is subtracted from
the pair entropy.
F=0U-T65
U= -(NHoB)x - (%BNZJ)y
S = S7(1) + §87(2)
= ~keN{%(1+x)1n¥%(1l+x) + %(1l-x)lnk(1l-x)
+ %Z[%(1+2x+y)ln¥(1+2x+y) + 2%4(1-y)ln¥(1l-y)
+4(1-2x+y)1In%(1-2x+y)]
-20%(1+x)1Ink(1+x) + %(1-x)1n¥(1-x)]}.
F = N{-FPoBx - %ZJy + Tks[%(1lfx)ln¥(1ltx)
+ BZ{%(1t2x+y)1In%(1lt2x+y) + %(l-y)ln¥k(l-y)
- (1xx)1n¥%(1lfx)}]}.
F/NkeT = &8 = -(FoB)x - ¥JZy + %(1ltx)lnk(ltx)
+ %Z{%(1t2x+y)In(.) + %(1l-y)ln¥(1-y)
- (1xx)Ilnk(1tx)}.
8 = =-(Br /Te)x - %(Z/Tr )y + %(1lftx)1ln¥k(1lEx)
+ %Z{%(1£2x+y)1n(.) + %(1-y)ln¥(1l-vy)
- (1£x)1ln¥%(1fx)}.
For Br = O
g = -%(Z/Tr)y + %(1ltx)1In¥%(1tx) + %Z[%(1E2x+y)1ln(.)
+ %(1l-y)1ln¥(l-y) - (lEx)ln¥k(1lfx)]
0 = f1(x,y) = d@/dx ; 0 = f2(x,y) = di/dy
It is helpful to recall that the first few terms of
the Morita expansion are known by other names - the names of
their inventors, and later reappeared as terms in the

cluster expansion for the free energy. (S5ee the names of the
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inventors associated with the approximations shown in

figure 5, Chapter II.) This is interesting since in their
original form it was sometimes difficult to see how their
inventors were able to logically derive the equations for
the free energy. As these results are rederived in the
Morita expansion they appear as a consequence of a very
orderly and logical development and the relation of the
approximations to each other is now understood. The physics
is clear in this new derivation as compared to the original
derivations where it was sometimes obscure. The first term
or first approximation, known as the l-cluster term in the
Morita expansion, is the same as the Weiss model which uses
the self-consistent field or molecular field approximation
for ferromagnets. The Bragg-Williams model (1934) is a more
rigorous statement of the Weiss model and gives similar
results, (see figure 5). The second term is the 2-cluster
term and was originally known as the Bethe-Pierls
approximation used to describe Cu-Zn alloys and is an
improvement over the Bragg-Williams approximation. The
Bethe-Pierls model (1936) takes into account specific short-
range order, i.e. local correlations between spins. The
second approximation is the sum of the l-cluster and 2-
cluster terms.

Some items of procedural interest

A. Particle Names

Label the N particles of a system using the N

15



counting: 1,2,...,N. This labeling is arbitrary. The same
same labeling is used unchanged throughout this work.

A "cluster" of particles is a set of particles,
that is, an unordered list of particles. For example,
{i1,...,in} = {ix}rx=1 is a particular cluster of n
particles. This is also called an n-cluster of the
particles of the system. The individual particles in that
cluster are called i1,1i2,...in. In a system of N

particles, there are the following n-clusters:

size of cluster generic name specific names
N l-clusters {i} {13},{2},...,{N}
¥N(N-1) 2-clusters {ii,iz2} {1,2}
(1/8)N(N-1)(N-2) 3-clusters {ii1,iz,is3}
N(N-1) N-cluster {ii,...,in}

In all, there are 2N -1 n-clusters.
Cluster function:

A "cluster function" is a function of the microstate
of the particles making up a cluster. For example,
f(N) (i1,...,in) = f(Mi1 ,Mi2,Mi3,...,Hin) 1is an
n-cluster function, where Vi is the microstate of the ith
particle and KHii1,Mi2,...,Min is the microstate of
{i1,...,in}.

So M1 is the microstate of particle i1

p 2 " " " " " 012
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In particular, the macrostate of an n—clustgr is a cluster
function.
Names:
There are N particles arranged on N sites of a
lattice. Sites are located at the positions
r = nibi + nzb2 + ... nabs
where
bi is the ith base vector of a unit cell of
the lattice, and each ni is an integer.

Sometimes it will be convenient to name a particle
for the site it occupies. Then we speak of the particle
ni ,n2. However, for much of the formal discussion of this
work, it will be convenient to assign the cardinal numbers
{1,2,...,N} to the particles in some way, and then denote a

particle by this cardinal number. So, we speak of the ith

particle.

P(n)i1,i2,...,in = PXn)i1,i2,...in (Mi1,Mi2, ...Hin)
is the macrostate of the cluster C(n)ii, ...in,il.e.,
P(n)i1,...,in is the probability of the microstate
Fii1,...,Hin.

A "cluster quantity" is the average of a cluster
function; it depends on the macrostate of the cluster.

A "cluster variable" is either a "cluster

function", or a "cluster guantity”. Cluster wvariables
can be "extrinsic” or "intrinsic". We suppose we can obtain,

perhaps by a direct measurement, the value of a cluster
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variable for any isolated cluster:'thesg are extrinsic. We
then define the intrinsic cluster variables:
f(1)y = £7°(1)4
fl2)ij = (£7(1)1 + £7°(1)5 ) + £7(2)4
f(3)ijk = (£°()i + £°(1)3 + £ (1) )
+(£7°(2)1; + £7°(2)ik + £7(2) 3k )

+(£7(3)i ik )

f{(n)i1,12,...4in = (Zj=1nf"(1)ij )

+(Zjef"(2)ijik )

These can be inverted to define any particular intrinsic
cluster variable entirely in terms of extrinsic cluster
variables only.

£f7(1)y = £f(1)4

£fr(2)13 = £(2)13-(£(1)i+£(1) ;)

£7(3)ijgr = £(3)ijr- (£(2)5;+£(2)in+f(2) jk)

+(f(L)1i+f (1) 3+f( 1) k)

18



£°(n)i1,4i2,...in = f(n)i1,i2,...in-(Ef(n-1)4, .. i)
+(Ef(n-2)3 .. i) -

Examples:
H=Lh"(1); + Eh"°(2)i3; +...LhiN)12...N

The Hamiltonian H is an extrinsic, N-cluster function.

It is expanded into intrinsic n-cluster functions.
U=Z<h (L)yi> + Z<h™(2Yi3> +...

The internal energy U is an extrinsic N-cluster quantity.

It is expanded into intrinsic n-cluster quantities.

S = -kBIM1Lp2.. ZNNP(N) InP(N)
= 87(1) 4+ 87(2) + ... + §7(N)
where
S7(1) = Li%i~(1)
S7(2) = ZijS8 (2)ij
S*(3) = ﬂiij“(3)ij;
The entropy S is an egtrinsic N-cluster quantity. It is

expanded into
S(1)i = §7{(1) = -kpI (Mi )P(1)ilnP(1l)4

S(2)i; = S(1)i + S(1); 4+ S7(2)ij

-kBEMiEHM2P(2)1 31nP(2)4

etc.

B. Summing over clusters, and the effects of symmetries
An n-cluster is defined by the n particles it

contains: the order of these particles is of no conseguence
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to the definition of the n-cluster, [So {1,2} is the same as
{2,1}, and {ix}(x=1-->n),is the same cluster as
{Pix)}(x=1-->n), where P is any one of the n!
permutations of the n numbers 1,2,...,n.] So, while there
are n! distinct lists, i.e. arrangements, of the n numbers
1,2,...,n, all these lists name the same cluster:
{1,2,...,n}, {ix}«x.
Sums of l-cluster quantities:
Zv(i)y Z(all 1-clusters)@(1l}i

= Di=1NQ(1)4

=Q1)1 + Q1)2 +.. .+ Q)3

Zvij £all 2-clusters@Q(2)i j

Ri=1NLj=1NQ(2)4;
(1 =/ 13)

B(QAU2)12 +...+ Q21N

Q(2)21 +...+ QN1

QU2)N1 + Q(2)N2 +... )

Tiz=1N-1Z3=3+1NQ(2)4

Q2)12 + Q2)13 +...+ Q2)1N
+..+ QN(2)N-1
[Note that Q(2)ij = Q(2);i]
Zvijk

£all 3-clusters@(3)ijk
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=(1/31)8:i8 8@ 3)4 5k
(i=/3=/k)
=Ei=1N-20 j=i+1N-1Zk=3+1NQ(3)i jk

[Note that Q23)ijk = Q3)iky = Q3 jik = Q3I)jki

QU3 kij = @3Ykji]

Zall n-clustersQn)i1l, i2...4in
=(1/n!)fi1=1NZi2=1N_ |
Zin=1N@(n)i1i2.. .in
(ix /= if for any «,f = 1,N except when x = (i
=Li1=1N-nliz2=41+1N-n+1

Lin=in-1+1NQ(n)i1i2...4in

For similar particles on a regular lattice, we can

drastically simplify the above sums. We use the

"n-coordination numbers"”, defined as follows:

Z(2)p

pair coordination number for spacing p

= number of 2-clusters whose spacing is p,

Z2(3) pgr = tri-coordination number for spacings p.q,r
= number of 3-clusters whose sides have
lengths p,q,r, with pigir.
Z{ 4) paqrs = gquad-coordination number...
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etc.
Lall 1-clustersQ1)i = NXQ(1l)wx
for « = any one of {1,2,...,N}
£all 2-clusters@2)ij = BNEpZ{2)pQ(2)x,f3,
for «,8,=any of {1,2,...N} such that
= - r->fl-->p
Tall 8-clusters@ 3)ijk = (1/3!)NEpEqErZ(3)pqr@ 3,3,
for any «,8," or any permutation of these.
etc.
C.Microstates and Macrostates

The microstate of the ith particle is MPi; its values
fall in some discrete or continuous set. For the Lenz-Ising
model, the values are +1 and -1. The microstate of an
n-cluster is the set of the microstates of each particle
coﬁtained in it:

B(n)ij1,...in = {Pi1,VMi2, ...Fin}
In particular, the microstate of the N-particle system is
the set of the microstates of each particle:
p(n) = {H1,¥2,...,Hn}

The _macrostate of the N-particle system is a
probability law defined on_the set of possible microstates
PON) ¢

P(N) (P(N) ) = probability of M(N)
The task of equilibrium statistical mechanics is to
determine this macrostate.

From the macrostate of the system, P(N), we can extract
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the macrostate of any subsystem:

P(n) (Pi1,...,Hin)
= EPi .. LUNP(N) (p1 ,H2,...,HN)
(except W1 ,H2,...Min)

(1) From this, it follows that the macrostate of any
n-cluster determines the macrostate of all the n’-clusters
( n’< n ) contained within it.
(2) We note that all macrostates are normalized:
Hi1...ZpinP(n)i1, ... ,in = 1
(for all n and all {ix}[x=1 -> n] )
D. A note on summing over n-—-clusters
We often sum over all the various n-clusters, for a
given value of n. We also often sum over all the various
microstates of a given n-cluster (e.g., when computing a
thermal average). It is convenient to represent these very
different sorts of sums with very different sorts of
notations. So, henceforth we will use
2i1Zi2...2in{.] = Zall n-cluster[.]
(ix =/ if Vx, B xxx «x=f)
EPi1EMi2. . ZPinl[..] = trim)i1,i2...in[.]
respectively, for the two different sorts of sums.
E. Representation of macrostates

It is a well-known result that a probability law is

equivalent with the set of all of its moments.

A common (sketch of a) proof is:
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(1) P(x)

probability law for a random

variable x.

(2) R(k) = N-oaP(x)exp(ikx)dx
is the Fourier transform of P(x).
{N represents an integral sign]
(3) R(k) = R(0) + R°(0)k + R’ (0)k2/2 + ...

is the Taylor’s series of R(k)

(4) By inspection of (2)

R(0) = N-20P(x)dx =1
by normalization of P(x).
R’(0) = iN-woxP(x)dx = x- is

the 1st moment of x.
Note: x- represents x with a "bar" superscript.

R”(O)

(i2 )N-oox2P(x)dx

(x2)-

is the 2nd moment of x.

(5) Hence, R(k) = 1 + ikx~ + %(i2)k2x2- +
(6) Hence, if we are given P(x), then we can calculate
all the moments, either directly,
(xn)- = N-eaoaxnP(x)dx,
or indirectly,
(xn)- = (dnR/dkn)k=0

If we are given all the moments, then we can construct
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R(k) = 1 + ikx- + (i2)k2(x2)- + ... ,
and inverse-Fourier transform it to get P(x)

P(x) = ¥rN-ooexp(-ikx)R(k)dk

QED.
This rule extends to the case of a set of (possible)
correlated random variables
P(x) is equivalent with wx=1nxia for all n.

When the microstate of each particle is bi-valued,

i = %1, then the macrostate of the particle is

PCL)i (i) = P(L)iy/ 1 \= %/1+x(1)
(—1‘> 1-x(1)4

where
x(1)i = id> = tr(1)i [P(1)4 (Mi )i ]
clearly, P(1)i (Pi) is equivalent with <M2> each
determines the other.
The macrostate of larger clusters can also be expressed in

terms of moments:

1 + x(1)i - x(1)j5 + x(2)ij
PC2)i3(Pik ) = % |1 + x(1)i - x(1); + x(2);
1 - x(1)3 + x(1); - x(2)4j
1 - x(1)i - x(1); + x(2)4;

where
x(2)ij = <MiM;> = tr(2)i3[P(2)ij(Pi,Hj)Rir;])

P(3)ije(MiMjHk) = P(3)ijk 1 1 1
1 1 -1

1 -1 1

1 -1 -1

-1 1 1

-1 1 -1

-1 -1 1

-1 -1 -1

b -
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1+
1+

=1/8 =

where
x(3)ijk

And so on.

14x(1) i +x(1);

+

I+ 4+ 1

PiM MK

tri3)ijk [P(3)ijk (Wi Pk )MiM;PK]

+x(1)k

b+ b+ 0+
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CHAPTER 1II

SHORT HISTORY OF THE LENZ-ISING MODEL

The following remarks are intended to provide some
additional background information for the Lenz-Ising model
with particular reference to ferromagnetic systems.

We focus attentioﬁ on the Lenz-Ising model as a
mathematical object existing independently of any particular
physical system. The Hamiltonian used in the Lenz-Ising
model is a definition of this model. The Hamiltonian we are
using is for nearest neighbor (n.n.) interaction only
between the particles in £he system. This system for
interacting particles, is the simplest one that it is
possible to study. It is not an exact description of any
specific physical system such as a ferromagnet, an alloy or
a liquid. The results can be expected to give the general
shape of the magnetization curve and the value of the
critical temperature but not the details for any particular
pPhysical system. This however is only a limitation of the
Hamiltonian that is used and the mathematics necessary'to
study it. Results that more accurately describe a specific
physical system can be cbtained by using a Hamiltonian that

is an improved representation of that system.
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History
To explain the experimental results obtained by
Stern and Gerlach in 1922 it was proposed by Uhlenbeck and
Goudsmit in 1925 that the electron possesses a spin S=1/2
and that it is oriented either parallel or anti-parallel to
the field[10]. Ising published in the same year the results
for a model based on a suggestion of his thesis advisor
Wilhelm Lenz, that if electrons were located on a lattice
and if an interaction were introduced between nearest
neighbor spins that favored parallel alignment of spins,
then at sufficiently low temperatures the spins would all be
parallel, and the model might provide an atomic description
of ferromagnetism{11,12]. The Hamiltonian corresponding to
this model, and which expreéses the internal energy of the
system can be written in the form,
H = -poBEMi - JZij(5um over all n.n. pairs)Vilj

where the interaction integral (J > 0) represents the
interaction between spins, B is the magnetic field, Mo the
magnetic moment of a single spin, and Vi or Mj = %1 is
the spin state of the ith electron on the lattice. The
suffix i runs over all sites of the lattice, and <i, j>
over all pairs of sites i and j which are nearest neighbors.

Ising studied this model in one dimension; his exact
results showed that spontaneous magnetization did not occur

at any temperature. _This result is correct. He extended

the one dimensional results to higher dimensions,
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incorrectly, and did not find any phase change in two or
three dimensions. This result is incorrect. Subsequent
calculations by others has shown that there is not a phase
transition in one dimension as correctly shown by Ising, but
for two or more dimensions, spontaneous magnetization does
occur below a critical temperature. It was unfortunate that
Ising’s results in two and three dimensions were incorrect
since it caused the model to be discarded for many years.
The model was later rediscovered and solved exactly, in zero
magnetic field, for two dimensions by Onsager in 18944(13,14].
Lenz - Ising Model
Further work has shown that by a change of names the

Lenz-Ising model can be made to simulate various systems
[15,i6]. Examples of such systems.are (1) maénets, in
which each molecule has a "spin” that can be oriented up or
down relative to the direction of an externél applied field;
(2) binary alloys such as Cu-Sn; (3) liquids which can be
represented by molecules and "holes" (i.e. empty spaces) on
‘a lattice (this is called a "lattice fluid") and there are
more examples. These physical systems can all be
represented abstractly by the same model which can be
described in the following way. We assign a two-valued
variable (+1 or -1) to each node of a regular space lattice
to represent the spin Hi, associated with each node i of the
lattice. For a magnet KM corresponds to an electron spin

state. For an alloy ¥ corresponds to an ion type (say Cu
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vs. Sn). For a "lattice fluid" M corresponds to the
presence or absence of an atom. A configuration of the
lattice is a particular set of values of all the spins, and
for N nodes there are 2N different configurations. An
"example of a configuration is shown in Fig.2.

In this model it is assumed that the forces between
molecules are only short range i.e., only nearest neighbor
(n.n.). When neighboring spins are the same (both +1 or
both -1) the energy is -J and when they are different (one
is +1, the other is -1) the energy is +J[12].

The interaction tends to align the n.n. spins as
parallel and to give aligned spins the lower energy state.
Heisenberg in 1926 was the first one to describe the reason
for this interaction between sbins. It is an electrostatic
interaction, a Coulombic type force that causes the spins to
align. And so the spin couplings which manifest themselves
as magnetic effects are in fact due to electrical forces
which cause the spins to be parallel and antiparallel. The
symmetric or anti-symmetric wave functions that the electron
spins are part of must of course satisfy the rules of
quantum mechanics. For the three physical systems described
above, this interaction could result in (1) spontaneous
magnetization, with most spins in the same direction, even
with B = 0; (2) transition between an ordered superlattice
and a lattice with random arrangement of atoms on the

lattice points; (3) condensation of molecules in one region
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THE ENERGY OF THE CONFIGURATION IS,
H=-ug BZy —Jizj Hi Hi
] [

(n.n. PAIRS)
H = —ug B (+6—3) + (—=7J + 5J)

H=3ug B—2J

Fig. 2. A POSSIBLE CONFIGURATION OF A FINITE SQUARE LATTICE.
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of space (clustering), leaving empty space in the rest of
the container{11].

For ferromagnetism the total internal energy is the
sum of the interaction energy and a magnetic energy term
-poBMi for each lattice point. For magnetic systems, Mo is
a characteristic value of a magnetic moment (such as the
Bohr magneton) and B is an external magnetic field (see
figure 2). For other physical systems this term -PoBri may
be any parameter which plays the role of a "chemical
potential"” in determing the average number of up and down
spins, or average composition of a mixture, or average
density of a molecule-hole system.

For ferromagnetic materials we calculate the mean
value of electron magnetic moment as[10],

M = NVYotanhi

where N = number of atoms per unit volume, Mo is the
magnetic moment per atom, and §§ represents HBa/keT where Ba
is the mean field acting on the atom, and ksaT is the
Boltzmann energy and ¥ is the magnetic moment per electron
equal to q/2m times its g-factor, times its angular momentum
J->. To calculate the internal energy of the material, we
note that the energy of an electron is exactly proportional
to the magnetic moment. We replace Mo with -MoB to
calculate energy and B can be written as (H + vM/¥0c2) where

H is the magnetizing field and » has been called the
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"exchange" force and is due to the exclusion principle in
guantum mechanics. (Note: we are using v for the "exchange”
force in this discussion to avoid confusion with J-> the
angular momentum. In the rest of this work J will represent
the "exchange" force). Theoretical predictions for the wvalue
of r are failures. The most recent calculations of the
energy betweep the two electron spins in iron-assuming that
the interaction is a direct one between the two electrons in
neighboring atoms-not only do not give the correct wvalue but
even give the wrong sign. With these substitutions the
mean energy of the material can be written as,

<U> = NWo[H+rM/2%¢0c2 ]tanhi
The "2" is inserted to correct for overcounting. The term
¢M/Eocz-reppesents interactiops of all poséible pairs of
atoms, and we must count each pair only once. With H = 0 we
can rewrite this equation as,

M/Msat = tanh([(Tc/T)(M/Msat )]
where Msat = NM and Te = PrMsat /kfoc2.
The solution to this equation is shown in Fig.3. For
the energy of the spontaneous magnetization below the Curie
point, we can set H=0, and note that tanh®t = M/Msat. The
mean energy is proportional to M2, and can be written as

<U>av = -NMTM2/[220c2Msat ].
If we plot the energy due to the magnetism as a function of
temperature, we get a curve which is the negative of the

square of curve of Fig.3, and is drawn in Fig.4a. If we were
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(a)

(b)

' (c)

Fig. 4. THE ENERGY PER UNIT VOLUME AND SPECIFIC HEAT OF
A FERROMAGNETIC CRYSTAL. SOURCE: SEE Figure 3, Page 34
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to measure the specific heat of such a material we would
obtain a curve which is the derivative of Fig.4a, and is
shown in Fig.4b. The true situation is more complicated
and both experiment and improved theory suggest the curve
should be more like that shown in Fig.4c. The curve
goes higher at the peak and falls to zero somewhat slowly.
In Fig.5 several specific heat curves are summarized
for a two dimensional Lenz-Ising model calculated with
various methods of approximation [17]. Onsager’s exact
solution for B = 0 is shown for comparison({13]. Approximate
methods [18,19] have attempted to reproduce the singularity
in the specific heat and other thermodynamic functions at
the transition point. Methods such as using Pade’s
approximants [11] to extrapolate series expansions of the
partition functions and thermodynamic properties have been
used in the past twenty years. The more recent
renormalization group work has given the most accurate
results at the critical point [20].We are using a different
approach to understanding the behavior of the model over a
range of temperatures and magnetic fields: we are
expressing the free energy of the Lenz-Ising model using the
Morita cluster expansion and then minimizing the free energy
expansion to obtain the equilibrium macrostate Po and then
studying the resulting approximation to the thermal

behavior.
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Diagramatically this method can be outlined as shown
in Fig.8. The last step shown in Fig.6, to "study Fo",
means to study these behaviors:[21,22]
"Study Fo"
U = F-TS = F+T(SF/5T)s i.e. U can be
obtained from F and its derivatives.

-M = (§F/FB)T Cs (§S/8T)n

-S = (§F/5T)s x (§FM/&B)T

where M is the magnetization
S is the entropy
F is the Helmholtz free energy
T is the temperature
B is the external magnetic field
U is the internal energy
Ce is the specific heat at constant magnetic field
x is the magnetization/particle
In this work we also use §, the free energy in reduced
units:
2 = F/NJ,
where N is the number of particles in the system and J is

the interaction energy.
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CHAPTER III

EXACT SOLUTION OF THE LENZ-ISING
MODEL FOR SMALL SYSTEMS

Exact Solution for A System of One Particle

The Cluster Expansion Method used in this work
involves approximating the behavior of systems of many
particles as a concatination of simpler systems: systems of
one particle, systems of two particles, and so on. 1In order
to introduce the notations and methods used here in a simple
and exact context, we begin by studying small systems.
Because these small systems can be studied exactly, their
behavior serves as a measure of the consequences of the
approximations used in the Cluster Expansion Method.

Thé equilibrium behavior of the Lenz-Ising systém of
N particles for fixed temperature T and magnetic field B is
given by Gibbs’ canonical prescription:

Z(T,B,N) = Epexp(-BH(B))
is the canonical partition function,

F(T,B,N) = -kaeTlnZ
is the equilibrium free energy,

P(N) (p;T,B) = exp(-BH(M¥))/Z,
is the equlibrium macrostate

which follows exactly from minimization of F(PN) versis

P(N) ., Since there are 2N distinct microstates, Z(T,B,N) has
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2N terms, before any combining of similar terms is effected;
hence, Z can be explicitly calculated for small enough
values of N. When N = 10, 2N = 1024; direct computation of
7 is feasible, particularly if a computer is used. When N =
20, 2N = 108; direct computation of Z is just within the
bounds of feasibility with current large computers. When
N = 30, 2N = 109; direct computation of Z is currently
infeasible.

In order to introduce the notations and methods used
we shall discuss the cases N = 1,2,3,and 4.

Microstate:

The microstate for this one particle system is a

b (+i> :

two-column

at any instant, the system is either spin-up (M = +1) or
§pin-down (¥ = -1).
Energy:

The energy H is H = H(¥) = -FoB¢
where,
P is the microstate,
Mo is the magnetic moment of the particle,

and B is the magnetic field,
The exchange term -JFiV;j does not exist here,
since there can be no pair interaction when there is one

particle. The system is an ideal paramagnet which is a

trivial case to study.
Macrostate:

The macrostate is the probability law for the
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microstate,

P=P1(p) =P [+1\=[a
-1 b/,

a" is the probability that the system is spin-up,and

where

"b" is the probability that the system is spin-down. Since

”" 1]

a" and "b" are probabilities,

az O constraint 1
and b2 O
and
a+b-=1 constraint 2.

It is more convenient to express P(V) in terms of a single

number controlled by a single constant, mainly the average

magnetization
X = <¢¥)> = a->b,
-1 £ x££ 1,
with
a=(1+x)/2
b=(1-x)/2
P =

({1l + x with -1 £ x 2 1
1 - x

Internal Energy:
The internal energy of this spin is
U = <H> = Lip=-1 [H(F=+1)P(1) (M=+1)+H(M=-1)P(1) (M=-1)]
= H(p=+1)P1) (P=1) + H(P=-1)P(1) (K=-1)
= (-F#oB)a + (FoB)b
= (-PoB)[%(1+x)] + (FoB)[¥%(1-x)]
= (PoB)[(-%)(1+x) + %(1-x)]
= -(MoB)x .
Entropy:
The entropy of this spin is

-S/kB = <1nP> = Zlp=-1P(1) (M)InP(1) (M)
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P(1) (-1)1InP(1) (-1) + P(1) (1)1nP(1) (1)

axln(a) + bx1ln(b)

B(1+x)1Ink(l+x) + %(1-x)1ln¥%(1l-x)

Free Energy:
The same term "free energy"” is used for two distinct

properties: On the one hand, it is used for the function

F(P) = U(P) - TS(P),
where P is any macrostate at all, not necessarily one
corresponding to any kind of equilibrium.- On the other
hand, it is used for the function

F(T,B) = F(Peq(T,B))
where Peq = Peq (T,B) is the unigue macrostate describing the
system in equilibruim at a temperature T and in a magnetic
field B. The context of use will always make clear which

function is meant.

The free energy for any macrostate P(x) is

F(x) U(x) - TS(x)
= -poBx + keT[X%(1+x)1ln¥%(1+x)
+ %(1-x)1n¥%(1-x)]

We now vary x to locate the value that makes F a minimum:

o
n

(§F/5x)

= -$0oB + ksT[%1lnk(1l+x) - %ln¥k(1l-x)]
The solution of this equation is

xmin = tanh(FoB/keT) = tanh(BFoB),
where # = 1/kBT

The minimum value of F is
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Fmin = F(xmin) = -MoBtanh{AMoB]
+ ks T{%[1+tanh(froB)]lnk[1l+tanh(AroB)]
+ %[1-tanh(fFoB)]lnk[1l-tanh(AroB)]}
Examination of (§2F/§x2) shows that this is actually a
minimum of the free energy, and consequently xmin and Fmin

are the equilibrium values:

F = Fmin
X = Xmin.

Other Quantities:
With the equilibrium value of the free energy F
known, we can find the equilibrium value of other
properties:

S

-(§F/8T) = -ke[%(1tx)1ln¥%(1fx)]

U F + TS = <H> = - PoBx .

Specific Heat: Cms = T(§S/8ST) = §U/ST .
Magnetization: M = §F/§B = Nxpo = NMotanh(FoB/ksT).

Suspectibility: chi = (§M/§B)T

[NWB2 /kBT]sech2 (MeB/ksT)
For ¥BB << keT,
chi = Cp /T

where Cp NHB2 /ks

is the Curie constant.

A System of Two Particles
We derive exactly the equilibrium free energy F and
the equilibrium macrostate P(2) for the Lenz-Ising model
with two particles as a function of the external magnetic

field B and the temperature T. These exact results will be

44



obtained using the approach of the cluster expansion method
in order to illustrate this method in a simple case; the
method of Gibbs ensemble is also used. Comparison will be
made between these exact results and an approximate solution
which estimates the probability distribution as the product
of single particle probability functions.
Cluster Expansion
We first derive the exact results using the free

energy minimization method. The free energy for an
arbitrary macrostate P(2) is given by

F(P(2)) = U(P(2)) - TS(P(2))
where U is the internal energy,
and S is the entropy.
For a specified temperature T and mégnetic field B, a unique
macrostate P(2)min minimizes this free energy F; this
macrostate is the equilibrium state for the specified T and
B,and Fmin = F(P(2)min) = F(T,B) contains all the system’s
equilibrium behaviors.

Microstate:

The microstate of the system is M = (M1,H2) where

HMi is the microstate of the ith particle.

Energy:
The hamiltonian H is

H = poB(F1+H2) - JH1p2,

where
B is the external magnetic field
Yo is the magnetic moment of each particle
and J is the exchange integral
Macrostate:
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The macrostate of the system is P(2)

P2)yp) = 2> [ 1 1

% 1+x1 +x2 +y

1 -1 1+x1 -x2 -y
-1 1 1-x1+x2-y
-1 -1 1-x1 -x2+y
where Xi = <Hid> for i = 1,2
and y = <Mip2>

Note that -1 % xi £ +1 and that -1 £ y & +1
*This system is now assumed to be unchanged under
exchange of its particles.

Because the magnetic field B is uniform in space,
so that it acts equally on each particle, and because all
particles have the same properties, then all equilibrium
properties must be unchanged under exchange of x1 and x2.

Hence, the equlibrium macrostate can depend only on a common

value
X = X1 = X2
P(2) = ¥ | 1+2x+y
1 -y
i -y
1-2x+y

and this simpler expression will be used below.
Internal Energy:
The internal energy U is

U = <B> -(FoB)(P1 + p2) - JP1P2

-2¥0oBx - Jy.
Entropy:
The entropy S is

S = -kBZall statesP(2) (pP)1lnP(2) ()

-ke [¥(1+2x+y)1ln(%)(.) +2%4(1-y)1ln(¥%)(.)
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+%(1-2x+y)1ln(%)(.)]
Free Energy:

The free energy F is,

F=0U--TS = -200Bx - Jy + ksT{[4(1l+2x+y)]1ln[.]
+20 (%) (L1-y)1in[.] + [¥(1-2x+y)]ln([.]}
Note: The notation [.] means the quantity which precedes

the logarithm is repeated as the argument of the logarthim;
that is,
(Alln[.] = [Alln[A]

We vary x and y in the free energy to (1) locate
those values of x and y which minimize F, and (2) to locate
the corresponding minimum value of F.

(x-eqn.)
0 = (§F/8x)y,B, T
= -200B + kaT[{(¥%)21n(¥%)(1+2x+y) -~ (¥)21ln(¥%)(1-2x+y)]
or 43P 0B = In[(1l+2x+y)/(1l-2x+y)]
(y-eaqn.)

0 (§F/8y)x,B, T

-J + keT[%ln(%) (1+2x+y)
- 2(%)In(%¥)(1-y) + (¥)1In(%4) (1-2x+y)]
(1+2x+y) (1-2x+y)
or 443J = In[ ----———-—=------ ]
These are two simultaneous, non-linear equations in the two
unknowns x and y. Their solution gives the minimizing

expressions for x and y:

y = tanh{8J+(%)1ln[cosh(2GFoB)]}
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x = %(l+y)tanh(28K0B) . (1)
Note that this solution has the correct behavior
under a "mirror reflection" of the magnet. Such a

reflection causes these changes:

X -=> =X
y --> y
B --> -B
T --> T
J --> J ;

These are compatible with equations (1).
When J = 0, this system becomes simply a pair of uncoupled
particles, that is, a pair of the systems studied in the
previous section. Indeed, when J = 0, equations (1) become
y = x2,

i.e., the particles are uncorrelated, and

x = tanhfiFoB ,
as shown in the previous section.

To calculate the minimum value of the free energy we
substitute (x,y)min into F(x,y,;T,B), obtaining ¥(T,B).

Gibbs Ensemble:

Following the suggestion of Dr. J. Goldman we next
derive the same exact results for a Lenz-Ising model of two
particles using the Gibbs ensemble method.

The equilibrium free energy is given by

F = -ksTlnZ
where the partition function Z,is expressed by,

Z

LPexp{-AHM)¥)];, 6 = 1/ksT

H(M) is the energy per each microstate

]

-HoB(M1+p2) - JHip2
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The macrostate is
P(M) = exp[-RH(P)1/Z

For the Lenz-Ising model with N = 2, the microstates are

P = /+1 +1 i
+1 =1
=1 ¥l
-1 =1
and E(P)) = E/+1 +1 N\= /-2L0oB -J ,
5 +1 -1 +J
-1 +1 +J
Sal bl +2PoB -J

Using these values, we calculate Z and then F:
F = ksTln[4exp(rF )cosh(r+3J)]
where r = ¥ln[cosh(28¥0B)]

The macrostate is

Play/+1 +1 \= ¥|1+2x+y| = 1/2Z exp[-RE(+1,+1)]
+1. =1 1 -y exp[-AE(+1,-1)]
-1 +1 1 -y exp[-AE(-1,+1)]
-1 -1 1-2x+y exp(-fE(-1,-1)]

By direct comparison we find

$(1 - y) = exp(BE(+1,-1)]1/Z2 ;

hence, y

tanh{3J+%¥1ln[cosh(28F0oB)]} ,
which is the same expression for y as obtained previously
using the cluster expansion.
Further, by direct comparison, we find
1+2x+y = 4exp(B (20W0B+J)]/2Z
and 1-2x+y = 4exp([A (-2M0B+J)]/Z

hence, XG

{exp(A (200B+J)]-exp(B (-2¥0B+J)]1}/2

or,

XG = Xcluster = X%(l+y)tanh2fpoB

as previously obtained.
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Magnetization:

Magnetization = M Ho(Hi+p2) = 2Mox

(2F0/2)(1l+y)tanh2BpoB
Magnetic Suspectibility:

Susceptibility = chi = (§M/§B)(B=0)

(240/2)[(§y/8B)(B=0) Jtanh(28F0B)
+(2M0/2)(1+y) (sech223ro0B)26Wo

(28p02)(1+tanhd J)

Comparison of Exact P(2) with the Macrostate
for Two Uncorrelated Paticles:

This system has two particles, and the behavior of
these is correlated by the exchange term -JWilM2. To measure
the extent of the correlations between the particles one
computes the macrostate which

(1) is consistent with the exact one-particle
macrostates P(1) (1) and P(1)(2),
and (2) has no correlation between their particles:
[P(2) (M1M2 Juncorrelated = P(l)exactP1P(1l)exacth2
This uncorrelated macrostate is

[P(2) (HF1M2)]Juncorrelated = % l+x1 %k 1+x2
1-x1 1-x2

(l+x1) 1+x2

1-x2
SEA B
1+x2
(1-x1) 1-x2
(1+x1 ) (1+x2) 1+x1 +x2 +x1 x2
(1+x1)(1-x2) 1+x1 -x2 -x1 %2
S il pregegaTeos SN B s s
(1-x1)(1l+x2) 1-x1+x2 -x1 x2
(1-x1)(1-x2) 1-x1-x2+x1Xx2
For the systems of interest in this work, x1 = x2 =x; hence,

50



1+2x+x2 (1+x)2

P(2)uncorrelated = ¥ JL - -x2| = ¥ (1+x) (1-x)
1 -x2 (1-x)(1+x)
1-2x+x2 (1-x)2

On the other hand, the exact case is
1+2x+y
P(2)exact = ¥4 1 -y
. 1 -y
1-2x+y
If the two particles were uncorrelated (i.e., J<<ksT), then
P(2)uncorrelated = P(l)exact*P(1l)exact, and so
¥y = <HiH2dexact = <M1><HP2> = x1x2 = x2
Hence one measure of the extent of correlation is the size
of the difference <Mi1M2> - <M1><H2 = y - x2; this difference
is zero for uncorrelated particles.
Other Results:
Other results for uncorrelatgd particles are as

follows:

Uuncorrelated = Hav = - PoB(x1+x2) -J<H1P2>

FoB(xi1i+x2) -Jdy12

-2W0Bx -Jdx2 |
-(S/kB Juncorrelated = P(2) (++)1nP(2) (++) +P(2) (+-)1lnP(2) (+-~)

+P(2) (-+)1nP(2) (-+) +P(2) (--)1nP(2) (--)

K(1+x)21n(.) + 2(%)(1l-x2)1ln¥(1-x2)

+%(1-x)21n(.)

2(%) (1+x)21nk(1+x)+2(%) (1-x2)1ln¥(1-x2)
+2(%)(1-x)21n¥k%(1-x)

1]

2(1+x)2 + %(1-x2)1ln¥%(1l+x)

+5(1-x)2 + %(1-x2)1nk(1-x)
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2[%(1+x)1In¥k(1+x) + %(1-x)1lnk(1l-x)).

-(S1 + S2)/ks ,

or A 2)uncorrelated = S1(1) + 52(1)

The approximate free energy is given by,

Funcorrelated =-2M0Bx-Jx2+2kT[%(1+x)1ln¥(1+x)+%(1l-x)1lnk(1-x)]
= (1)1 + F(1)2 - Jx2 . (2)

This equation for the free energy can be minimized versis

changes in x:

(x~eqn) 0 = §F/§x = -200B -2Jx +2kT[¥%1lnk(1l+x) -%ln¥k(l-x)]

(FoB+Jx)kT = %1ln[(1l+x)/(1+x)] = tanh(-1)x ,

or b4 tanh[(FMoB)/keT + (J/kBT)x]

tanh(fFoB +Jx) (3)
where 8 = 1/kseT.

When J = 0, the two particles are independent, and hence
they are uncorrelated; intensive properties are exactly the
sum as in the N=1 case studied above, while extensive
properties are exactly the sum of the extensive properties
of the individual particles. When J > 0, then the two
particles interact, and there is correlation. However,

one can retain the interaction but ignore the correlation,
by, for example, using Egq. (2) for the free energy.

The result for x, Eq. (3), is an approximation to the
correct results; this approximate result for x can be used
to obtain approximate results for other quantities,

including U, S, and F.
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Summary

The same exact results have been derived for N = 2
Lenz-Ising model using either the cluster expansion or the
Gibbs ensemble method. The Gibbs ensemble can only be used
for exact calculations, whereas the cluster expansion can be
used for either exact or approximate calculations. We
found that for the minimum free energy the agreement
between exact and approximate results was good.

It is noted that for N = 2 the results for B = 0 are
quite different than those for B =/ 0, whether the results
are obtained by exact or approximate methods. Since many of
the published calculations for the Lenz-Ising model are for
the case B = 0 then it will be important to see if this
tendency for non-zero B-field results to be different than
zero B-field results continues for.larger number of
particles.

A System of Three Particles

We derive the exact results,for a Lenz-Ising model
with only three particles using the cluster expansion.
There are several possible configurations for three
particles; Case 1I- three particles on a straight line, Case
IT- an equilateral triangle (all J's equal), Case III-a
right triangle. We begin with Case II, and consider an
equilateral triangle.

Microstate:

The microstate of this system is P = (MiM2M3) where
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Mi is the microstate of the ith particle.
Energy:
The hamiltonian for this system is,
H= -poB(MP1+H2+H3) - J(MiM2+KaHa+1MHa)

where
M1, M2, M3 are the l-particle microstates for

particle 1,2,3 respectively,
B is the external magnetic field
and J is the interaction term for pairs of
particles.
Macrostate:
There are three particles and initially we do not
treat them as similar. Later we will let them be the same.

The microstates are:

H1 B2 H3

1 1 1

1 1 -1

1 -1 1

1 -1 -1 This is an exact
=3t 1 1 configuration.
-1 1 -1
-1 -1 1
-1 -1 -1

Each macrostate is a probability law for these 8

microstates. The macrostate P(3) is

H1 P2 U3
P(3) (P1p2ps) = P(3) 1 1 1 g
1 1 -1 h
1 -1 1 i
1 -1 -1 = J
-1 1 1 k
-1 1 -1 1
-1 -1 1 m
=il -1 -1 n

Note the following constraints: g,h,i,j,k,l1,m,n > = 0.
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The quantities g -> n, are Jjust numbe£s. We can either
describe probability functions in terms of numbers such as
these, or in terms of physical quantities x,y,z. The
advantage of working with g -> n is that they do not mean
anything. They are just numbers, and only mean the
probability of being up or the probability of being down.
For example, the probability for the microstate with all
three particles being up, is given by "g". The physical
quantities, such as "x", mean something - it is the
probability of spin up minus the probability of spin down:
i.e. x = p(7) - p( ).

The macrostate for this three particle system is,

P(3) (M1 ,M2,/M3)

4 X1 x2 X3 y12 y13 y23 21237

-1 -1 -1 1 1 1 2.

1
1
1 .
= 1/8 1 1 -1 -1 -1 -1 1 1 L
1
1
1
1 /
where x,v,2, have been previously defined. Note that the

individual y entries are products of x’s (y12 is the product

of x1,x2 etc.) and z123 is the product of xi1,x2,x3. For
example in the second row y23 = (x2)(x3) = (1)(-1) = -1, and
in the third row zi123 = (1)(-1)(1) = -1.

How can we check this afrangement? Use normalization
and add up the g,h,...m,n’s. For example,

g = 1/8

X, y’s 2’s

(S

1/8(8) = 1
0 0 0

o]
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For the Lenz-Ising model these three particles will be
similar, and we can add up the x’s and the y’s. For
example, 3x = x1 + x2 + x3 and all three spins are pointing
up. Then P(3) can be written as,

’

1 +3x +3y +z
3 1 +x -y -2
1 +x -y -z
P3) = 1/8 1 -x -y +z
1 +x -y -z ¢
1 -X -y +z
1 -X -y +z
1 -3x +3y -2z
b y

Remember that the x and y entries above are sums, e.g.
3y = y12 + y13 + y23 (the sum for all three entries) and the
value for z is a product of the three x values.

Internal Energy:

The internal energy is the the average value of the
hamiltonian, i.e. fhe expectation value of H,
U = <H> = - PMoB[<M1 >+<H2>+<H3>]

- J[<H1B2>+<H2Ha>H<HIYI D]

Recall the N=1 case. We defined the average value or the
expectation of the spin-state, M, as

X = <H> = Lp-11P(1) ()

(P=+1)(P(1) (+1)) + (M=-1)(P(1) (-1))

We recognize symmetries in the crystal lattice,

<Hi1id> = F2> =<M3> = X
the average value of W/, i.e. the average value of the spin
state, and

<H1p2> = <H2H3> = <HiHad> = y
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the average value of the product of M.

The internal energy can then be written as,

U = -3v¥0oBx - 3Jy
where x is the average value of the magnetization of the
particle. It is the probability of spin up minus the
probability of spin down: i.e. x=p(”)-p( ). The quantity y
is the (average value) probability of finding a pair being
parallel.
Entropy:
The entropy for this system is,
-S/kB = <1nP(3)>
-S/ks = [£,all states]P(3) (M1MP2M2a)1InP(3) (Mi1MaMa).

The exact configuration for the microstatees is a 3x8 array

(see p.54). We wrote the macrostate in terms of the

numbers g --> n. To write this macrostate in the form we
use with x1,x2,y12,2 we need to evaluate the numbers g --> n
as we evaluated the analogous numbers c¢,d,e,f for P(2). For

the N=3 case the new quantity is z = <HiM2¢3> i.e. the
product of all three microstates. The quantities x and y
are the same as in macrostate P(2) .
REDUCING

Is it the case that if I sum P(3) over any one ot
these three particles I get the P(2) of the other 2
particles. We do this in the following way, by extracting
the behavior of 2 particles from the known behavior of 3

particles. We do this by adding up over all possible states
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of the third particle. This is known as reducing. (reducing
the marginal probability)

P(2) (M1K2)
P(2) (M1p3)

LEp3=-11P(3) (M1M2p3)
TH2=-11P(3) (M1p2M3)

P(2) (F2M3) LP1=-11]P(3) (M1pP2M3)
P(2) (M1H2)
1 1 1 11 1 1 -1
= P(2) 1 -1 = P(3) -1 11 + P(3) s 2=l
-1 1 -1 11 -1 1 -1
-1 -1 -1 -11 s -1 -1
pa=1 H3=-1
P(2) (W1p2)
(111) (11 -1)
= 1/8(1+43x+3y+z) +1/8(1l+x-y-2) -=>1/8(2+4x+2y)
(-1 11) (1 -1 -1)
1/8(1l+x-y-2) +1/8(1-x-y+z) --> 1/8(2 -2y)
(-1 1 1) (-1 1 -1)
1/8(1+x-y-2) +1/8(1l-x-y+z) --> 1/8(2 -2y)
(-1-1 1) (-1-1-1)
1/8(1-x-y+2) +1/8(1-3x+3y-z) --> 1/8(2 -4x+2y)
=} 1+2x+y
1 -v
1l -y
1-2+y

This is the same P(2) as derived earlier - this time by a
reduction method.

Entropy:
- S/k = ZP1p2p3P(3) InP(3)
= (1/8)(1+3x+3y+z)1ln(1/8)(1+3x+3y+z)
+(3/8)(1+x-y-2)1In(1/8)(1+x-y-2)
+(3/8)(1-x-y+2)1n(l1/8)(l-x-y+z)
+(1/8)(1-3x+3y-2)1ln(1/8)(1-3x+3y-2)
Energy

F=-U0U-TS
= -3poBx - 3Jy
+(keT/8)[(1+3x+3y+2z)1In(1/8) (1+3x+3y+z)
+3{(1+x-y-2)1ln(1/8) (l+x-y-2)}
+3(1-x-y+2)1n(1/8)(1-x-y+z)
+(1-3x+3y-2)1n(1/8)(1-3x+3y-z)]

We now MINIMIZE

0 = 8§F/8x = -3FoB + (ksaT/8)[31n(1/8)(1+3x+3y+z)
+31n(1/8)(l+x-y-2)
-31n(1/8)(1-x-y+z)
-31n(1/8)(1-3x+3y-z2)]
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0 = &§F/8§y = -3J + (kaT/8)[31ln(1/8)(1+3x+3y+z)
-31n(1/8)(1+x-y-2)
-31n(1/8)(1-x-y+z)
+31n(1/8)(1-3x+3y-2z2)]
0 = 8§F/8§z = (k8T)[1n(1/8)(1+3x+3y+z)

-31n(1/8)(1l+x-y-z)
31n(1/8)(1-x-y+z)
-1n(1/8)(1-3x+3y-2)]

Suppose B=0, so we can study (x,y,z) with B=0.

[x eqn] (1+3x+3y+2) (1+x-y-2)
(1-3x+3y-2)(1l-x-y+z)

-=> (1+3x+3y+z)(1+x~-y-2) = (1-3x+3y-z2)(l-x-y+2z)

[z eaqn] (1+3x+3y+2z) (1-x-y+z)3
(1-3x+3y-2z)(l+x-y-z)3

-=> (1+3x+3y+z)(1-x-y+2)3 = (1-3x+3y-2)(l+x-y-z)3

From [x], we know
(1+3x+3y+2) (1-x-y+z)

(1-3x+3y-~2z) (1;;:;:;)

From [z], we know

(1+3x+3y+z) (1l+x~-y-2)3
(1-3x+3y-2) (1-x-y+z)3
‘ Hence
(l-x-y+2z) (l+x-y-z)3
(1+x-y-2) (1-x-y+z)3
(l-x-y+z)4 = (l+x-y-z)4
l-x-y+2 = 1+x-y-2
-x+z2 = X-2
[x = 2]

Return to [x], with (x =

N
~—

(1+4x+3y)/(1-4x+3y)
-—> l+4x+3y
_..) [x

(1-y)/(1-y) =1
1-4x+3y
0]
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Hence, (B = 0) --> [x = z = 0]

We continue, B =z 0 with [y eaqn]
3J = 2ksT/8([31n(1/8)(1+3y)-31n(1/8)(1l-y)]
-=> J = (ksT/4)1n((1+3y)/(1-y)]
4J/ksT = 1n{(1+3y)/(1l-y)] x = 4J/ksT = 48J
x = 1n[(1+3y)/(1-y)] =--> exp(x) = (1+3y)/(1l-y)
--> exp(a) - exp(a)y = 1+3y
-=> exp(x) - 1 = y[3 + exp(x)]
y = [exp(x) - 1]1/[3+exp(x)]
y = [exp(48J) - 1]1/[exp(4RJ) + 3]
Case I

We have been examing case 11 for triangle
arrangements. There are two other possibilities for a three
particle Lenz-Ising lattice models: the triangle and
straight line. We now examine case I for 3 particles in a
straight line.

For a straight line we have J12=J23=J and Ji13 % 0

Then yi12=y23=y1 and y13=y2. The microstates are as before,
r N
1 1 1
1 1 -1
1 -1 1
P(3) = 4 1 -1 -1
H -1 1 1
-1 1 -1
-1 -1 1
-1 -1 -1
S y,
The new macrostate 1is,
i
1 + 3x + 2y1 + y2 + 2
1 + x - y2 - z
1l + x - 2y1 + y2 - z
P(3) = 1/8 j 1 - x - y2 + z
[ 1 + x - y2 - 2z
1 - x - 2y1 + y2 + z
1 - x - y2 + 2
\1—3x+2y1 + y2 - z
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Free Energy:
U = -3MoBx - 2Jyv1

F = -3WoBx - 2J»n1

+ks T{(1/8)(1 + 3x + 2y1 + y2 + 2)1In(1/8)(.)
+(2/8)(1 + x - y2 - z)In(1/8)(.)
+(1/8)(1 + x - 2y1 + y2 - 2)ln(1/8)(.)
+(2/8)(1 - x - y2 + z)In(1/8)(.)
+(1/8)(1 - x - 2y1 + y2 + z)1n(1/8)(.)
+(1/8)(1 - 3x + 2y1 + y2 - z)1ln(l/8)(.)?

Minimize: Suppose B = 0. Then x = z = 0.
0 = §F/dy1 = -2 + (keT/8)[21ln(1/8)(1+2y1 +y2)

(y1] ~21n(1/8)(1-2y1 +yz2)
-21n(1/8)(1-2y1+y2)
+21n(1/8)(1+2y1 +y2 )]

(@]
1"

§F/8y2 (kT/8)[1n(1/8)(1+2y1+y2)

-21n(1/8)(1-y2)

+ 1In(1/8)(1-2y1+y2)
[y2] -21n(1/8)(1-y2)

. + 1n(1/8)(1-2y1+y2)
+ 1n(1/8)(1+2y1+y2)]

Solve {y1] and [y2]:

[y1] J = (k8T/4)In[(142y1+4y2)/(1-251 +y2)]
--> 4J/kBT = 1In{(l+2yn1+y2)/(1-2y1+y2)]
i 0 = 1n[(1+2y1+y2)2 (1-2y1+y2)2/(1-y2 )4 ]
s 1 = (1+2y1+y2) (1-2y1+y2)/(1-y2 )2
(1+y2+2y1 ) (1+y2-2y1) = (1l-y2)2
(14y2)2 - 4y12 = (1-y2)2

1 + 2y2 + y22 -4y12

1 - 2y2 + yz22

4dy2 = 4y12
vz = y12]
Substitute this result into [y1]
[y11] 4J/%BT = In[(1+2y1+y12)/(1-2y1+y12)]

2(J/kBT) = In((1l+y1)/(1-y1)]
Results:
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yv1 = tanh(fJ)
y2 = {tanh(3J)]2
For B = 0 and
x =0
z =0
straight line tanh(x) = [l-exp(-2x)]/[1l+exp(-2x)]

case
A System of Four Particles
This will be a 4-body exact calculation for an equi-
everything pyramid. In these exact calculations it will be
the first time that we have encountered a three dimensional
Lenz-Ising model. For this pyramid all sides, faces and
angles are equal.
We have,
X = <H1> = <H2> = <H3d> = <{H4e>d
Which is the average behavior of each particle separately.

vy = <HFi1KM2> = <F1H3> = <H1MH4>

<H2H4> = <MU3pad>

Maps>

i.e. the average correlation for each pair of particles.

zZ = <Hip2M3> = MHip2Mad> = <Pip3pPsd
= <P2M3H4>
W = <H1Papapad
Macrostate:

The behavior of a single particle is given by the
macrostate P(1)

PUL) (W) = %

1+x | = P(1) 1
1-x -1

The behavior of one particle with another is given by
the macrostate P(2)

1+2x+y 1 1
P2y (p p’) = x4 1 -y = P(2) i A=
1 -y -1 1
1-2x+y -1 -1

-
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PC2) (W ¥7)

For three particles,

PC3) (p,p°

For four particles,

= P(2) (Mi1 MHi2).

BT

= 1/8

This is an alternative

way of writing P(2) by using

the Morita notation.

the macrostate P(3) is
1+3x+3y+2 111
l+x-y-2 1 1-1
l+x-y-2z 1-1 1
l-x-y+z = P(3) 1-1-1
l+x-y-2 -1 11
l-x-y+z -1 1-1
l-x-y+z -1-1 1
L1-3x+3y—z -1-1-1

- microstates
the macrostate P(4) is

P(4)(l-',lJ’,lJ”,lJ”’)

1 1 1 1
1 1 1 -1
1 1 -1 1
N L =0l =l
1 -1 1 1
18 =31 RS !
1 -1 -1 1
1 -1 -1 -1 = 1/16
-1 1 1 1
-1 1 1 -1
-1 1 -1 1
=] - ) =
-1 -1 1 1
il it KAl =il
e e’ 1 G
-1 -1 -1 -1

microstates of the
four particles.

Internal Energy:

U
8]

Entropy:

- S/ks

<H>
- 400Bx - 6Jy

LHP(4) InP(4)

(1/16) (1+4x+6y+4z2+w)ln(1l/16
+4(1/16)(1+2x-2z2-w)1ln(1/186
+6(1/16)(1-2y+w)1ln(1/16) (.

-(FoB) (4x)

= 1+4x+8y+42+W um
1+2x+0y-22-w
1+2x+0y-2z2-w
1+0x-2y+0z+w
1+2x+0y-22z-w
1+0x-2y+0z+w
1+0x-2y+0z+w
1-2x+0y+2z-w
1+2x+0y-2z-w
1+0x~-2y+0z+w
1+0x-2y+0z+w
1-2x+0y+2z-w
1+0x-2y+0z+w
1-2x+0y+2z-w
1-2x+0y+2z-w
1-4x+6y-4z+w

|

(J)(6)(¥)

) (L)
) ()
)

+4(1/16)(1-2x+2z-w)1ln(.)
+(1/16)(1-4x+By-4z+w)ln(1/16)(.)

63



[x]

[z]

(w]

Free Energy:

F = - 440Bx - 6Jy
+ (kBT/16)[(1+4x+6y+4z+w)ln(1/16)(.)
+4(1+2x-2z-w)1ln(1/16)(.)
+6(1-2y+w)ln(1/16)(.)
+4(1-2x+2z-w)1n(1/16)(.)
+(1-4x+6y-4z+w)in(1/16)(.)]

Minimization:

0

1nu

SF/Sx

-4p0B + (ksT/16){41ln(1/168)(1+4x+8y+dz+w)
+81ln(1/18) (1+2x-2z-w)
-81n(1/16)(1-2x+2z2-w
-41n(1/18)(1-4x+6y-4z+w)]

(1+4x+8y+dz+w) (1+2x-2z-w)=2
4poB/keT = ¥ln[ ---------------—-—-—-——-- ]
(1-4x+8y-4z+w) (1-2x+2z-w)2

§F/8y
-8J + (kaT/16)[61n(1/16)(1+4x+B8y+4z+w)
-12In(1/18)(1-2y+w)
+61n(1/16)(1-4x+8y-4z+w) ]

) (1+4x+By+4z+w) (l-4x+6y-4z+w)
16J/k8T = 1In[ ------—---~=-—---—-———-=————- ]

SE/Sz2 .

(ks T/16)[41ln(1/186) (1+4x+B8y+z+w)
-8ln(1/18)(1+2x-22-w)
+81In(1/16)(1-2x+2z-w)
-41n(1/16)(1-4x+6y-4z+w)]

(1+4x+B6y+4z+w) (1-2x+22-w)2
O | ettty - B b oy bt o it ]
(1-4x+6y-4z+w) (1+2x-22-w)2
(1+4x+8y+dz+w) (1-2x+2z-w)2
(1-4x+By-4dz+w) (1+2x-22-w)2
&F /8w
(ke T/16)[1In(1/16)(1+4x+6y+4z+w)
-41n(1/16)(1+2x-2z-w)
+61n(1/168) (1-2y+w)
-41n(1/16)(1-2x+22-w)
+1n(1/16)(1-4x+6y-4z+w) ]
(1+4x+By+4z+w) (1-4x+By-4z+w) (1-2y+w)B

(1+2x-2z-w)4 (1-2%x+2z-w)4
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(1+4x+6ytdz+w) (1-4x+6y-4z+w) (1-2y+w)6

(1+2x-2z-w)4 (1-2x+2z-w)4

Suppose B = 0.

(x] (1+4x+6y+4z+w) (1+2x-22-w)2
—————————————————————————— =P
(1-4x+By-4z+w) (1-2x+2z2-w)2

[z] (1+4x+B8y+4z+w) (1-2x+2z-w)2
—————————————————————————— =1

(1-4x+6y-4z+w) (1+2x-2z-w)2
(1l+4x+By+4z+w) (1-2x+2z~w)2
—————————————— S SoeoCoeSmEEmE (from [x])
(1-4x+6y-4z2+w) (1+2x-22-w)2
(1+2x-2z-w)2
ditto 8 Sosoaaah ST (from [z])
(1-2x+2z-w)2
-=> (1+42x-2z-w) = (1-2x+2z-w)
== 4x = 4z
-=> [ x = 2z ]

Using this result in the [ x ] equation:

1+8x+By+w
_________ =1
1-8x+B6y+w

--> 1+8x+6y+w = 1-8x+6y+w

-=> 16x = 0
-=> x =0
Hence, ( B=0) --> (x=2z=20)
Using x = z = 0, return to the original equation for [x].
(1+6y+w) (1-w)2
[x] 1600 B/k8T = 1ln [----=-=--=-———=—~ ]
(1+6y+w) (1-w)2

1lnl since B=0
0
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{¥]

(2]

-=> &

-—>

i.e., the x-eqn is automaticaly satisfied.

(1+6y+w)2

166J

1]
'—J

o]
—

86J

1]
=
o]

------ ) (4)

is automatically satisfied, ( 1=1 )
(1+8y+w)2 (1-2y+w)6 = (l-w)8

(1+6y+w) (1-2y+w)3 = (1l-w)4

1+6y+w = -—---- (5)

The above two equations (4) and (5) for y and w
are two simultaneous equations in two unknowns.
Substitute for 1+6y+w in the eqn. for [ v ].
88J = In [--——----- ]

(1-2y+w)4

l-w-

In (-=--)
1-2y

28J

exp(28) = (1-w)/(1-2y+w)

20y +aw = 1 - w

-=> & -1 - 28y + (2 + 1)w = O

-->

(x + 1)w = 1 - x + 2xy

-=>w = (1 -x)/(1 +a) + (2y)/(1 - x)

Hence, the Free Energy is for B = 0

F

= -6Jy + (ksT/16)[2(1+8y+w)1ln(1/16)(.)
+ 8(1-w)lIn(1/18)(.)
+ B8(1-2y+w)ln(1/18)(.)]
with w as above. .
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Write,
8 = @3F = - 68Jy + (1/8){(1+6y+w)1In(1/18)(.)
+4(1-w)ln(1l/16)(.)
+3(1-2y+w)1ln(1/16)(.)]

In the Morita l-cluster approximation,

¥ = KCHE’> 8 M S P’> = <P > P > = x2 =
Z = P PSS B CH D HIOCHTYY = x3
W = <P PIP22R22OS 8 KUDKHIIOE o’y = x4

In the Morita 2-cluster approximation,

y = < PP’> is treated exactly.
Z = CHEPPPY = P OXKHIE?’> = xy = 0; B =
w=<pp’p”p!!’>:<pp’><p)7p))i>:yz.

In the Morita 3-cluster approximation,
¥,2 are treated exactly,

W = CHEPDCHEIPI?I> 4+ P D E PPy
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CHAPTER IV

APPLICATION OF THE CLUSTER VARIATIONAL
METHOD TO THE LENZ-ISING MODEL

First Order Approximation: Mean Field Theory

{One Cluster Approximation)

Internal Energy:

The internal energy of the Lenz-Ising model is, in

the first approximation,

where

U =

Ent

<H> = =HoBREi<Mi> - BJILij(n.n.)<MiMji>

~poBNx - ®BJINZx=2

x11 and Z = Z21(2) is the number of nearest
neighbors.

pair correlation coefficent = x2 in this l-cluster

approximation for independent clusters.

ropy:

The entropy is

S

S

S~(1) = ZiS87i(1) = NS~.(1)

-Nks [%(1+x)1ln¥%(1+x) + %(1l-x)Iln%(1-x)]

Free Energy:

The Helmholtz free energy is

oo
i} 1]

U - T8
- PoBNx - %JNZx2

+ NkBT{%(1+x)1ln¥%(1+x) + %(1-x)1ln¥%(1-x)]
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It is convenient to work with a dimensionless version of the
free energy:
§ = (F/NJ) = - Brx - %Zx2 + Tr [%(1+x)1ln¥(1+x)

+ %(1-x)In¥%(1-x)] (

(o]

where Br = PoB/J and Tr = ksT/J are dimension-
less versions of the magnetic field and the temperature.

The values of § given by Eq. (8),as a function of x,
are shown in Fig. 7 for Tr = 3,6,9,12,24,36. The critical
temperature for this first approximation is Tr,c! which is
the same as the pair coordination number in this
approximation, (see Eq. (8)). The values selescted in this
figure are multiples of Tr,ec. The external magnetic field
Br,is zero in Fig. 7.

The units used in all figures for &,Br,and Tr are
called "reduced" units and are dimensionless. They are
given in equation (8).

Similar results are given in Fig. 8 when the
external magnetic field, Br, is equal to 10. This is a very
strong field and is equal to about 107 gauss for
ferromagnetic systems. The minimum free energy here is

close to saturation (x=1), as compared to Fig. 7, where Br

was zero.
Minimization:
The equilibrium state of this system is found by

differentiating F, or &, with respect to x:
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[x ean]
0 = (d8/dx) = - Br - Zx + Tr [%lnk(l+x)

- %lnk(1-x)]
Hence:
Br + Zx = ¥Tr1ln{(1+x)/(1-x)]
Considered as an equation determining x = x(Tr,Br), this

is transcendental ,that is,the methods of algebra cannot

solve this equation for x(Tr,Br). However, an explicit
result is possible for Tr = Tr (Br,x):
2(Br + Zx)
Te = —--=----- (7)

In{(1+x)/(1-x)]
Tables and graphs for Tr = Tr (Br ,x) can be inverted to
give x = x(Tr ,Br ).
The equilibrium free energy in this first
approximation is calculated by solving Eq. (7) for Tr
and x when Br is kept at a constant value. These values are
used in Eq. (6) to calculate the minimum free energy.
The results are given in Fig. 9 for several different
values of Br.
There is a critical temperature in this case, which -
we can determine by the conditions that
B=0
and
x*0 & x£20
Equation (7) becomes
2Zx 27Zx

Te el = —mmmmommmmn- = =g (8)
In{(1+x)/(1-x)] 2x
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There are two branches for x = x(Tr,0) when Tr < Tr,ecl.
is a minimum on one of these and is a maximum on the othsar.
We use d2§/dx2 to determine which is which:

d2g@/dx2 = -2 + Te {3%[1/(1+x)] + %[1/(1-x)]1}

=2 + BT [1/(1+4x) + 1/(1-x)]
See Fig. 7. We observe that for Br = 0, the branch
(x = 0) is always a solution of (dé/dx) = 0. However,
this solution makes 8 (x;Tr,Br=0) a minimum only for
Te > Tr,el = Z. For Tr < Tr,el!, this branch makes
8(x;Tr ,Br=0) a maximum (i.e., d2§/dx2 < 0). Thermostatic
equilibrium occurs only when F is a minimum vs. changes in
X. So, we select x-branches accordingly.

Magnetization x is compared in Fig. 10, to Tr for
various values of the magnetic field Br. Complete

saturation is indicated by *1, with all the spins up or

down. A change of phase occurs when Br = 0,and this is
shown to occur in the figure for Tr,el = 12, and also
derived in Eq. (8). The curve for Br = 0 approaches the x =

0 line from either side, and almost crosses the line, before
turning and becoming parallel with this line for values of
Tr>12.

The entropy for one particle clusters is presented in
Fig. 11, as a function of the reduced temperature, for
various values of the magnetic field. The entropy in bits
per particle is calculated by dividing the entropy

(joules/eK) by 1In(2).
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The specific heat Cp is compared in Fig. 12 with Tr
and different magnetic fields. These results can be
compared directly with Fig. 5 from reference (17). The
results in the first approximation, using the Morita
expansion of the free energy, and truncating the series
after the first term, are the same as the Weiss calculation
for one particle systems using self-consistent field theory.
In Fig. 5 (Ch. II)'these results are labeled as Bragg -
Williams, which is a refinement of Weiss’s calculations.

A contour plot of the entropy in "bits" is presented
in Fig. 13. This is only the entropy part of the free
energy in Eq. (8) and all values are positive and above
the x,y plane as they should be. This plot of the entropy

will be referred to in subsequent approximations.

Second Order Approximation: Bethe-Peirels Theory
(Two - Cluster Approximation)

Internal Energy:
The internal energy of the Lenz-Ising model is, in
the second approximation,
U = <H> = - MoBNx - %JINZy1 (9)
where x = xi{l), vyp = xi,i+p(2),
and the interaction energy is represented by %JNZyi.
Compare to U in the first approximation where y = x2.
Entropy:
The entropy is

S = 87(1) + §87(2)
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i.e. for the first two terms of the free energy expansion
where

S°(1) = Ei=1NSi (1) = NS"(1)

S°(1) = - Nke([%(1l+x)In(.) + %(l-x)1ln(.)]

S(2) = L(i, 3y [Si3(2) - Gi(1) - B3(1)]

S°(2) = %NkBZpZp{[S(2)i,i+p - 2S(1)i]
S°(1) is all the entropy for l-particle clusters and

S°(2) is all the entropy for 2-particle clusters.

where p = spacing of a pair of particles

Zp = pair coordination number

number of pairs of spacing p.

S°(2) = -%NkeIpZp{[4(1l+2x+yp)ln(.)
+2(%) (1-yp)1n(.) + %¥(1-2x+yp)lin(.)]
-2[%(1+x)1In(.) + %(1-x)1n(.)]1}

Freg Energy: | |

The Helmholtz free energy is

F=U-TS
8 = F/NJ = (U - TS)/NJ
8 = =Bex - ¥Zyr + Te{%(1+x)1In(.) + %(1-x)1n(.)

+ 3ZpZp {[%(1+2x+yp)1n(.) + 2(%)(1l-yp)1ln(.)
+ ¥ (1-2x+yp)1ln(.)]
- 2[%(1+x)In(.) + %(1-x)1n(.)13}} (10)
The equilibrium state of this system is found by

differentating § with respect to x and yi:

[x eqn]

o
il

(88 /8 x)

o
1

-Br + Tr{%ln¥%(l+x) - %ln¥k(1l-x)

80



+ %pZp{[2(%)1ln¥(1l+2x+yp)
- 2(%)1n¥(1-2x+yp)]

- 2(%In%(1+x) - Zlnk(1l-x)]}.

1+x 1+2x+yp 1+x
2Br /Tr = ln ~-- + ¥EpZp[ln ------- - 2ln ---]
1-x 1-2x+yp 1-x
[yp ean]
= (§8/8yp)
0 = - %Z8p1 + %Tr {Zp [¥ln¥4(1+2x+yp)
-%1ln¥%(1-yp) + %ln¥ln(1l-2x+yp)]1}
Hence:
(1+2x+yp ) (1-2x+yp )
4716p1 = TeZpin(------———------=-—- ]

We must solve these two simultaneous equations.
Let p>1l. Then the [yp equation] is (for Tr>0)
[(1+2x+yp ) (1-2x+yp)
0 =1ln ----------ooo—a—-
(1-yp)2]

since Zp =/0 for any p. Hence,

(1+2x+yp ) (1-2x+yp)

(1+2x+yp ) (1-2x+yp) = (1-yp)2

(1+2x)(1-2x) + [(1+2x)+(1-2x)]yp + yp2 = 1l-2yp+yp?

4x2+2yp = -2yp
from which we find

yp = x2 , p>l

That is, in the "2-cluster approximation", spin-correlation
extends exactly as far as spin-interaction, which is
"nearest - neighbor" in this case.

We can now simplify the [x] equation:
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1+2x+yp 1+x

Zp>1Zp[ln -————-- - 2ln ---]
1-2x+yp 1-x
1+2x+x2 1+x
= Ip>1Z2p[1ln -=-=--~--- - 2ln ---]
1-2x+x2 1-x
1+x 1+x
=z Ep>1Z2p[ln (---)2 - 21n ---1 =0
1-x 1-x

Hence, the equations become:

1+x 1+2x+y1 1+x

[x] 2B /Tr = 1n --- + %Z1[1ln -~——---- -21ln ---]
1-x 1-2x+y1 1-x
(1+2x+y1 ) (1-2x+y1)

(¥] 4/Tr = ln[------==m-——=--=—- ] (11)

These are transendental when regarded as determining x & y
as functions of Tr & Br.
Certain results can be extracted from [x] & {y1]
1. When Br = 0, inspection shows that (x = 0) is always
a solution of [x]. We then use [yi1] to determine

yi = yv1(Tc,0)

(1+y1)2
4/Tr = In ---=----
(1-y1)2
1+y1
implies 2/Tr = 1ln ---- = 2arctanh y1
1-v1
vi = tanh 1/Tr

See the following derivation for this result.
1+y 1+y
[Let 2a = In --- , --- = exp(a) = b , 1l+y = b-by ,
1l-y 1-y

by+y = b-1 , (l+b)y = b-1 , y = === = -===--—-
b+1 exp(a)+l
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exp(a/2)-exp(a/2)

VANET i bt = b = = tanh(a/2)
exp(a/2)+exp(a/2)

a = 2arctanh y

See figure 14 and 15 for a plot of x vs. Tr and y vs.
Tr .

An alternative method was actually used to generate

- the results plotted in figure 14 and 15. This is the
Simplex method of minimization, and does not use the methods
of calculus to achieve a minimum value for a function{6]. In
this approximation it is used as a convenient method to
obtain the results shown in these figures. The same results
would be obtained by solving the minimum equations for [x]
and [y] given by Eq. (11). It will be shown in later
apprpximations that it is necessary to use the Simplex

" method to mimimize the free energy equations that are
obtained by truncating the Morita expansion of the free
energy. It will be shown in these higher approximations
that the mimima occur on the boundary of the function, and
minimization using the methods of calculus will not work in
these situations. The Simplex program for this second
approximation is listed in Appendix E.

The equilibrium free energy is given in Fig. 16 as a
function of Tr for various values of Br. If this result is
compared with Fig. 9 in the l-cluster result it will show
that the equilibrium free energy results are the same in

both cases, at least to the accuracy of the grid size used
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to plot these results. See Appendix G, Table 2 for the
actual values of the equilibrium free energy.
2. There is a critical temperature. We can deterrmine it

as we did for the l-cluster approximation, by setting

the conditions

Br =0 and ( x® 0 & x =/ 0 )
[x] 4x
0 = 2x + %21 [ ---- - 4x]
1+y1
1
implies y1 = ----
(Z1-1)
as can be shown below.
1
0 =1+ Za[ -——=- - 1]
l+y1
1 1 (1+y1) - 1 Vi
oo e [T R O o = oo S ey
Z1 1l+y1 1l+y1 1+y1
. y1+1 1
21 = =.—=-=— = 1 + --
y1 ¥1
1 1
Z1r -1 =--, y1 = -——-
vi Z1-1
That is, at Tr,ell, y1 = (Z1-1)-1. We use this in
[vy1] to determine Tr,c
2 2 2
Te,ell = ——--—mm- e Z mmmmmm——
1+y1 1 1 Z1-1+1
In -——--- In[(1+ ---)(1- ----)-t1] 1ln ------
1-y1 21 -1 Z1-1 21 -1-1
2 2
Z1 1
In ----- Y e = i
21 - 2 1 - 2(Z1)-1
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Expanding this as a series in 1/Z1 allows convenient

comparison with Tr,ecl:

-2/71 - %(2/71)2 - 1/3(2/21)3 +...

Tr,cll

1 +%(2/21) +1/3(2/21)2 +...

Z1{1 - [%(2/71) +1/3(2/Z71)2 +...]
+[%(2/21) +...]2 + ...}

Z1{1 -%(2/Z1) +(-1/3 +1/4)(2/21)2 +...}

Z1{1 -1/71 -(1/3)(1/Z1)2 -...}

Z1-1-(1/3)(1/21) +...

Tr,el -1 -(1/3)(1/Tr,cl) +...

Te,el [1 -1/Z1 -(1/3)(1/(Z1)2 -...]

As in the "l-cluster" approximation, the critical
temperature depends on the crystal lattice structure --
including its dimension -- only through Zi = the number of
nearest neighbors, 12 (See Fig. 1, Ch. I). So, for example,
the two dimensional hexagonal lattice has the same behavior
as the three dimensional cubic, in this approximation.
Since exact calculations show that their behaviors are
different, we note that a dependence on only Z1 is a failing
of this approximation.

It is well-know that these sorts of approximations

become more exact as Z1 --> ® (i.e., as dimension --> @),
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()

and becomes very bad as 21 --»2 (i.e., as dimension -->1).

We now examine the stability of the solutions

&23 Tr 1 1 1 1
Sxx = === = -=- [--- + === + LpZp (~------ $ m————
5 x2 2 1l+x 1-x 1+2x+yp 1-2x+yp
1 1
) |
1+x 1-x
&28 Tr 1 1
ypx = ----- = ==BpZp (-===== = ——==--- )
Sypdx 4 1+2x+yp 1-2x+yD
§2§ Tr 1 1
gxyp = -—---- = -=Zp(-====7= - —-—--- )
& %8 yp 4 1+2x+yp 1-2x+yp
§23 Te 1 2 1
§ypyp = ---= = —=Zp(-—-——-- + -=== + —m-=- )
Syp2 8 1+2x+yp 1l-yp 1-2x+yp

Evaluating these on the branch :

Br = 0
x =0 & y1 = tanh 1/T:
yp>1 = O
gives:
§23 Tr 2 1
-——— = == [2 + Z1(--=-= = 2) #Ep>1Zp(0)] = Te [l + Z1(--- - 1)]
& x2 2 1+y1 1l+y1
&2 Tr
--=-= = == Zp(0) = 0
& x5 yp 4
5238 Tr Zp 1(1+y1)-1 + 1(1-y1)-1 p=1
S N ]
Syp2 4 0 p>1

Inspection shows that the branch Be=0 yp=tanh 1/Tr p=1
x=0 0 p>1

is stable ( 8''>0 ) for Tr > Tr,ecll, but is unstable
(8xx < 0 ) for Tr < Tr,cll.

There is another branch for Br = 0 & x =/ 0O

’
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it is stable for Tr< Tr,ell . We now study it

Equation [x] can be solved for yt = yi(x;Br/Tr)

1+2x+y1 1+x 2Br 1+x
[In =-=-=-~--- - 2ln ---] = (=== - 1ln ---)(Z1/2)"!
1-2x+y1 l-x Te 1-x
1+2x+y1 1 2Br 1+x 1+x
ln ~-——--- = 2[(--(--- - 1ln ---) + 1In --- ]
1-2x+y1 Zr Tr 1-x 1-x
1+2x+y1 2Br 1 1+x
In -~-——=—-- = 2[--- + (1 - --)In ---] = a
1-2x+y1 Z1 Tr Z1 1-x

-==> (142x+y1)/(1-2x+y1) = expa = b

-—-=> 1+2x+y1 = b-2bx+by1

y1 -byt1 = b-2bx-1-2x
(1-b)yr = (b-1)-2x(1+b)
-—=> y1 = -1-2x[(1+b)/(1-b)] = -1 +2x[(l+expa)/(-1l+expa)]
y1 = -1 +2x[(expa+l)/(expa-1)]
y1 = -1 + 2x/(tanh{2Br /Z1 Tr + (1-1/Z1)1n[(1l+x)/(1-x)]})"1
Suppose Br = 0 and Zi1---> @ . Then
yi = -1 + 2x/(tanh{ln[(1+x)/(1-x)]1})"!

= -1 +2x/[4x/(2+2x2)] =-1 + 1 + x2 = x2
as we would expect.
Suppose Br = 0 . Then

2x/(tanh{(1-1/Z21)1n[(1+x)/(1-x)]})-1

~<
-
n

1
-
+

Also for x © 0, we find:

+

yi = -1 2x/tanh[(1-1/Z1)(2x)]
= -1 + 2x/(1-1/Z1)2x

= -1+ 1/(1-21) = (-1 + 1/21 + 1)/(1 - 1/71)

1/(Z1 - 1) , as expected.

These results are plotted in Fig. 17, with y1 vs x.
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We observe a deviation from the l-cluster result, y = x2,

a result of including pair-correlation effects.
This result for yi1 = yi1(x;Br/Tr) can be used in the
(y1 ]-ean,

[(y1] (1+2x+y1 ) (1-2x+y1)

to calculate Tr as a function of x & Br/Tr. The results,

y1 y1 (x;Br /Tr )
Tr = Tr(x;Bc/Tr)

can be inverted to give

1l

X x(Tr ,Br)
vi = y1(Tc,Br)

of course, yp>1 = X2

[Results ... in the same pattern as for l-cluster case.j
Although the results in this 1- and 2-cluster

approximation seem to be reasonable e.g. a real critical

as

temperature is calculated, it was discovered that already at

this level of approximation there is a problem with

truncating the free energy expansion. The results of this

difficulty will show up very clearly in the next higher

cluster, i.e. the 3-cluster approximation, where for

example, a complex value is obtained for the critical

temperature. The following figures will illustrate the

roots of the problem.

In Fig. 18 we plot only the internal energy part ot
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Eq. 10 for the free energy, which is the same as given by
Eq. 9. The contour plotting method used in these results is
similar to those discussed in [23]1,[24],[25]. In Fig. 19
only the entropy part of the free energy is plotted. This
shows some very unphysical behavior where the entropy
becomes negative for some regions of the x,y plane. This of
course is physically impossible, and will be a particular
problem in the next higher approximations.

Figures 20 and 21 show the entire free energy given
by Eq. 10. It shows two minima, and the illustrates the
distortion in the free energy surface due to the behavior of
the entropy. This distortion will become worse with the
third approximation, and the minima will occur on the
boundary, where the methods of calculus cannot be used to
find a minimum. This 2-cluster approximation has
illustrated the effect of truncating the free energy
expansion, although the difficulties resulting from this
truncation are more evident in the 3-cluster results. A
listing of the program HIDDEN6 used in this contour plotting

is given in Fig. 33 of Appendix E.

Third Order Approximation: Limited 3-Cluster
We will restrict ourselves to a "“square” lattice and
include only nearest neighbor and next-nearest neighbor

pairs and retain only the most compact triplet and ignore

all other n-clusters (n & 2).
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Fig. 18. INTERNAL ENERGY ONLY FOR 1,2-PARTICLE
CLUSTERS vs. x,y WITH B,=0.
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Fig. 19. ENTROPY (IN BITS) FOR 1,2-PARTICLE CLUSTERS vs. x,y



Fig. 20. & (INTERNAL ENERGY & ENTROPY) FOR 1,2-PARTICLE
CLUSTERS vs. x,y FOR B,=0, T,=10. ( § CLIPPED AT & 2 2)
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In this restricted view we have the following
"square" lattices:

In one dimension, the lattice is linear, and the
retained pairs are given by p=1 and p=2. The quantities
p,a,r are the distances between particles. The retained
triangle is described by p=1, gq=1, r=2. The coordination
numbers in l-dimension are:

pairs---> Zp; Z(2)1 = 2, 2(2)2 = 2
compact triplet---> Zpqr; Z(3)112 = 6.

In two dimensions, the lattice is square and the
retained pairs are p=l,and p=2 (or strictely, p=y2 but we
have retained p as an "index" of distance). The retained
triangle is given by p=1, q=1,r=2(actually r=42. The
coordination numbers are:

pairs---> Zp; Z(2)1 = 4, Z(2)2 = 4
triplet---> Zpqr; Z(3)112 = 24

In three dimensions the lattice is cubic. The
retained clusters are like those in the square case, and the
coordination numbers are:

pairs---> Zp; Z(2)1 = 6, Z(2Y2 = 12
triplet---> Zpqr; Z(3)112 = 72
These results can also be obtained arithmetically, using the
rule that particles are located at lattice sites according
to
r->41,i2...ida = alDx=1nixb "«

where the b x are orthogonal unit vectors for "square”
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lattices, a is the lattice constant, and the nix are

integers.

We select the particle "." at r-> = 0->, and vary
it to locate other particles. The distance between "." and
any other particle is |1n|(2) = £i=z1Dni2. We calculate the

coordination numbers of each particular sort of n-cluster by
counting the number of 1ln’s that generate n-clusters of that
particular sort.
In one dimension , D=1, and we have:
{n=+1, n=-1} <--> smallest 2-cluster
<==> 2t2)1 = 2
{n=+2, n=-2} <--> next smallest 2-cluster

<=-=-> Zt2)1 = 2

n n P q r
1 2 1. 2 1
2 1 2 1 1
-1 +1 1 1 2 Z(3)112 = 6
+1 -1 1 1 2
-1 -2 1 2 1
-2 -1 2 1 1
In two dimensions, D = 2, and we have
nx ny n
; Illll
0 -1 1 Z(2)1 = 4
1 0 1
-1 0 1
1 1 N2
1 -1 42 {2)2 = 4
-1 1 J2
-1 -1 J2
f: q= r=
nix ny nx’ ny’ n 1n’ ln-1in’
% " " o H 1II H 1II N 5 I
0 -1 =18 0 1 1 N
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We continue in a similar way as in the first two
approximations.
Internal Energy:
The internal energy 1is,
U = <H> = -PoBNx - %JINZiy1i
Entropy:
The entropy is,
S = 8°(1) + §7{2)’ + S§7(3)’
(where the prime notation reminds us that we are restricting
our attention to n.n. pairs and the n.n.n. pairs and only to
triangles for the triplets.)
The intrinsic entropy for l-clusters is,
S~(1) = Ei1S(1)3y = NS"(1) = -Nko{¥%(1ltx)ln.}
(The notation "ln." means that, the quantity that
immediately precedes the function "1ln" is .repeated as its
argument.)

For pairs the intrinsic entropy is,

§*(2)’ = §°(2).,.+41 + S7(2) .,.+2
= -Nke {21 {[(1/4)(1+2x+y1 )1ln.+etc]-2[]}
+ Z2{[(1/4)(1+2x+y2)1ln.+etc]-2(1} }
For triangles the intrinsic entropy 1is,
S°(3)’ = 87(3) ., .+1,.+2

=-NksZ112{[(1/8)(1+3x+2y1 +y2+z112)1ln. +etc]-etc }

(Note: In this description the used as a subscript,
as in S”. ,is meant to replace the i usually used to

represent a single particle. Also in the pair notation the
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i, j would be replaced by .,.+1 and n.n.n. pairs are written
as .,.+2. For triangles we use .,.+1,.+2 instead of the
usual i, j,k.)
Free Energy:
The Helmholtz free energy for this limited 3-cluster
approximation is
8§ = (F/NJ) = [-Brx-1/2Z1Y1] + Tr {[%(1+x)1ln. + (%(1-x)ln.]
+¥%p=1, 22p { [M(1+2x+yp )ln. +2¥4(1-yp)1ln.
+4(1-2x+yp)ln.] -2[%(1+x)1In.+%(1-x)1ln.]}
+(1/8)Z112{[(1/8)(1+3x+2y1+y2+z112)1ln.
+2%(1/8)(1+x-y2-2112)1n.
+(1/8)(1-x-2y1+yz2+z112)1ln.
+(1/8)(1+x-2y1+y2-2112)1ln.
+2%(1/8)(1-x-y2+z2112)1n.
+(1/8)(1-3x+2y1+y2-2112)1ln.]
-2(%(1+2x+y1 )1n.+2%¥%(1l-y1 )ln. +4(1-2x+y1 )1n. ]
- [%(1+2x+y2)1ln.+2x%(1l-y2 )In.+%(1-2x+y2)1ln.]

+3[%(1+x)1ln. +%(1-x)]1}}

Minimization:

We will minimize the free energy using calculus
minima and also with the Simplex algorithm, reference (6).

The equilibrium state of this system is determined by
finding the minimum values for x,y1,y2,zi112 which are
obtained by calculating the derivative of § first wrp. to x,
and then yi,etc., sétting the eqns. equal to zero, and
solving for x,yt,y2,2112.

Calculating the derivative of § wrp. x, and setting
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the result equal to zero, is called the [x] eaqn.

[x] 0 = (§8/5x%x)
1+x
= -Br + Tr{%ln ---
1-x
1+2x+yp 1+x
+3%(Ep=1,2)Zp [(%¥ln --—=--- = Lo U S
1-2x+yp 1-x
1+3x+2y1 +y2+2112 1+x-y2-z112
+(1/6)Z112 [(3/8)ln -—==———==—==——=-- + (2/8)1ln -—-—————=--—~-
1-3x+2y1+y2-2112 l-x-y2+z112
(1+x-2y1+y2-2112) 1+2x+y1
(1/8)1ln -—-———————====m=--- - 1ln -~ -————--
(1-x-2y1+y2+z112) 1-2x+y1
1+2x+y2 1l+x
- ¥%ln ———---- + (3/2)1n ---11}
1-2x+y2 1-x
1+x 1+2x+yp 1+x
2%Br /Tr = ln --- + %(Ep=1,2)Zp[ln ------- - 21n ---]
1-x 1-2x+yp 1-x
Zi112 1+3x+2y1+y2+2z112 1+x-y2-z112
+ -=-- [31ln ------==——=m———- + 2ln ----~-———--
24 . 1-3x+2y1+y2-2z112 1-x-y2+z112
1+x-2y1+y2-2112 1+2x+y1
£ IREEESS = S S Gl == ahd
1-x-2y1+y2+2112 1-2x+y1
1+2x+y2 1+x
- 41ln --=———- + 121n ---]
1-2x+y2 1-x
{vy1]
0 = (§8/85y1)

-421 + Tr{Z1 [1n%(1+2x+y1) - 21n%(l-y1) + 1n¥%(1l-2x+y1)]
+ 2(4/6)Z2112{[(2/8)1n(1/8) (1+3x+2y1 +y2+z112)
- 2(1/8)1n(1/8)(1-x-2y1+y2+z112)
- 2(1/8)1n(1/8)(1+x-2y1+y2-z112)

+ (2/8)1n(1/8)(1-3x+2y1+y2-2112)]
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[y2]

-=>

- %[In%(1+2x+y1) - 21n4%(1l-y1) + ln¥(1-2x+y1)]}}

(1+2x+y1 ) (1-2x+y1)

= ln -
(1-y1)2
Z112 (1+3x+2y1 +y2+2112)(1-3x+2y1+y2-2112)
+ —--- [lIn === mmmmmmm e e
371 (1-x-2y1 +y2+z112 ) (1+x-2y1+y2-2112)
(1+2x+y1 ) (1-2x+y1)
- 2ln -===—mm—m—————————-- ]
(1-y2)2
0 = (88 /8y2)

Tr {%Z2 [4ln %(1+2x+y2)-2X%41n¥(1l-y2)+31n¥4(1-2x+y2)]
+(1/6)Z112[(1/8)1n(1/8)(1+3x+2y1+y2+z112)
-2(1/8)1n(1/8) (1+x-y2-2112)
+(1/8)1n(1/8)(1l-x-2y1+y2+z112)
+(1/8)1n(1/8) (1+x-2y1 +y2-2z112)
-2(1/8)1n(1/8)(l-x-y2+z112)
+(1/8)1n(1/8)(1-3x+2y1+y2-2112)]
-[%1n¥(1+2x+y2 ) -2%1ln¥(1~y2 ) +%1In¥4(1-2x+y2)]}

(1+2x+y2 ) (1-2x+y2)
0=(%)(¥)Z22ln - -------——-—-—-—-——-

(1-y2)2
Z112 (1+3x+2y1 +y2+2112 ) (1-x-2y1 +y2+z2112)
= e B T e e — I s =
6%8 (1+x-y2-2z112)2(1l-x-y2+2112)2

(1+x-2y1+y2-2112 ) (1-3x+2y1+ty2-2112)

* _________________________________
(1+x-y2-2112)2 (1-x-y2+z112)2
(1+2x+y2)(1-2x+y2)
S e e e ]
(l-y2)2
(1+2x+y2 ) (1-2x+y2)
= ln -———mmmemmm -
(1-y2)2
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672 (1+x-y2-2112)2(1l-x-y2+2112)2
(1-x-2y1+y2+z112 ) (l+x-2y1+y2-z112)
(l+x-y2-2112)2(1l-x-y2+z112)2

(1+2x+y2 ) (1-2x+y2)

[z112]
0= (§&@/5z112)

= Tr{(1/6)Z112[(1/8)1n(1/8)(1+3x+2y1+y2+z112)
-2(1/8)1n(1/8)(1l+x-y2-2112)
+(1/8)1n(1/8)(1-x-2y1+y2+z112)
-(1/8)1n(1/8)(1+x-2y1+y2-2112)
+2(1/8)1n(1/8)(1-x-y2+z2112)
-(1/8)1n(1/8)(1-3x+2y1+y2-z112]}
12 mmmmm e m o ————— o — =
(1—3x+2y1+y2—z112)(1+x-2y1+yz—2112)(1+x—y2—2112)2
We begin the study of these by supposing that Br = 0.
By inspection, we find that ( x=0,z112=0 ) then satisfy ([x],

[z112] identically:

1+yp
[x] O = 1lnl + %(Zp=1,2)Zp[ln ---- -21nl]
1+yp
Zi112 1+2y1 +y2 1-y2 1-2y1 +y2
+ ==--[{31ln ----———-- +2ln ---- 1n ~—————--
24 1+2y1 +y2 1-y2 1-2y1 +y2
1+y1 l1+y2
-81ln ---~- -4ln ---- +61lnl]
1+y1 l+y2

[z112]
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(1+2y1+y2) (1-2y1+y2) (l-y2)2

————————————————————————————— = 1
(1+2y1+y2) (1-2y1+y2)(l-y2)2
Equations [y1] & [y2] become:
[yvi] 4 1+y1 Zi112 (1+2y1 +y2) l+y1
- =z2ln ---- + ----[2ln ---—------- -41n ~—--]
Tr 1-vn1 371 (1-2y1 +y2) 1l-y1
2 1l+y1 2112 142y1 +y2 1+y1
S i " ooos & coooll [l ocosgads -21ln ----]
Te 1-y1 KA 1-2y1 +y2 1-y1
[y2]
l+y2 Z112 (1+2y1 +y2 ) (1-2y1 +y2) l+yz
0=2ln -~--- + ---- [2ln --------------—---—- -4ln ----]
1-y2 672 (1-y2)2 1-y2
1+y2 Zi12 (1+2y1+y2 ) (1-2y1 +y2) 1+y2
0=ln ---- + ---- [ln -=---=-==>—-——""—"~————-- -21ln ---- ]
1-y2 822 (l-y2)2 1-y2

We will now solve [y2] for y1 = yi(y2;Z112/Z2), and

use the result in [y1] to obtain Tr = Tr(y2;Zi1i12/Z1;and

Z112/22).

[y21]

622 1+y2 (1+2y1+y2)(1-2y1+y2) 1+y2

--- {~In ----1 = 1In ---—--- e —— - 2ln ----

Zi12 1-y2 (1-y2)2 1-y2
(1+2y1+y2 ) (1-2y1 +y2) 672 l+y2

In ~----———— === - = [2=- ~==-1{1n ----]

(l-y2)2 Zi12 1-y2

(1+2y1+y2)(1-2y1+y2) 6722 l+y2

------------------- = exp {{2 - ----1[ln ----]} = b
(1-y2)2 2112 1-y2

(1+2y1+y2)(1l-2y1+y2) = (l-y2)2b
(142y1)(1-2y1) + [(1+2y1)+(1-2y1)]y2 + y22 = b(l-yz2)2
1 - 4y12 + 2y2 + y22 =zb(1-2y2 + yz2)

-4y12 = [1-2y2+yz22]b - 1 - 2y2 - y=22
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y12 = %¥[1 + 2y2 + y22 - b +2byz -by22]

y12 = ¥[(1-b) + 2(l+b)yz + (1l-b)yz2]

yi2 %[1-bl[1+y22+2[(1+b)/(1-b)]lyz]
We have now derived the equations for b and v12 .
To evaluate b and y12 we have the following calculations

in one and two dimensions.

In One Dimension Zz = 2 and Z112 = 6. Hence
b = exp{[2-6%2/6]11ln[(1+y2)/(1-y2)]}
= exp{[ 0 ]
=1 and

yi2 = (1/4)[ O + 2%2y2 + Oxy22]

y12 = y2
Summarizing: b = 1
y2 = y12
In Two Dimensions Zz2 = 12 and Z112 =‘24. Hence
b = exp{[2-6%12/24]1n[(1+y2)/(1-y2) }

exp{[2-3]11n[(1+y2)/(1-y2)]
exp{-1n((1+y2)/(1-y2)1}
[(1+y2)/(1-y2)1(-1)
[(1-y2)/(1+y2)]

and the relation between y1 and y2 is,

y12 = %[(1-b) + (1-b)y22 +2(1+b)y2 ]

${(1-[(1-y2)/(1+y2)]) +2(1+[(1-y2)/(1+y2)])y2
+(1-[(1-y2)/(1+y2)]) }
¥{ (2y2)/(l+y2) + 2(2/(1l+y2))y2

+(2y2/(1+y2))y22 }
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B(2y2/(1+y2)][3+y22]

%ly2/(1+y2)]1(3+y22]

Summarizing: b [(1-y2)/(1+y2)]
¥ly2/(1l+y2)]1[3+y22]
We use these results in [y1] to obtain Tr.

(y1]

vi2

2 l+y1 Zi12 14+2y1 +y2 1+y1
-- =z 1ln ---- 4+ ==--- [ln --==--——- - 21n ---]
Tr 1-y1 371 1-2y1 +y2 1-y1

We derived the result for yi2 as:

yi2 %{(1-b)+2(1l+b)y2+(1l-b)y22}
6Z2 1+y2

exp{[2- ---]1ln ----} (from p.105)
Zi112 1-y2

where b

Using these equations we found in ONE dimension that
y2=y12 .
In ONE dimension, if we use this result in [y1i] ébove
and recall that Zii2 = 6,Z1 = 2 then we derive y1 as:
2 l+y1 6 1+2y1 +y12 1+v1
-=z1n ---- + - [ln - =-=»--——--—-- - 21ln ---- ]
Tr 1l-y1 6 1-2y1+y12 1-y1

1l+y1 l+y1 l1+y1

In ---- + 2ln --—-- - 21ln —----
1-v1 1-v1 1-v1

1+y1
In ---- + 0
1-y1

--> 2/Tr In[(1l+y1)/(1l-y1) = a
o (l+y1)/(1-y1) = exp(a) = b

-=> 14y1 = b - by

T (1+b)»n b -1
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--> i IS s Bl SIS
b+1 exp(a)+l
exp(a/2)-exp(-a/2)
"’ " exp(a/2)+exp(-a/2)
=0 = tanh(a/2)
--> = tanh(1/Tr )

We know that this is the same result as in the

2-cluster case.

y12 = (L/4)[-( )2y2 + 2(2)y2 -( )y22]
= (1/4)[4(1+1/2( )y2 -( )y22]
since ( )y22 = O
yi2 = (1/4)[4(1+1/2( )y2]
= [1+1/2(2-622/2112)1y2
= [2 -3Z2/Z112]y2 = [2-(3%2)/61yz
In one dimension, we found yi12 = y2, and we find it again

from this result.
Hence, in one dimension, yi1 = tanh(1/Tr) ...same as in the
2-cluster approximation.

Summary

For any dimension, we find, for Br=0

622 l+y2
b = exp{{2 - ---][ln ----- 1}
Z112 1-y2
1+b
vi = % {(1-b)[1+2(---)y2+y22]}
1-b
2 1+y1 Zi12 1+2y1 +y2 l+y1
-=1ln ---- 4+ =---- {In - ——==————- - 2ln ----]
Tr l1-v1 371 1-2y1 +y2 1-v1
x =z z112 = O
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The existence of negative values for the entropy in
the truncated free energy was illustrated in the previous
section, see Fig. 19. The effect on the free energy surface
was shown in Figs. 20 and 21. In the third approximation
these negative values of the entropy have severe effects on
the derived results. If a critical temperature is derived
from these minimized equations it will have a complex value
[23]. To examine the entropy values resulting from
truncating the expansion after the third term the values are
shown in Figs. 22 and 23 for two different values of z, the
triple correlation moment . In Fig. 22 the value of the
entropy values are given as a function of magnetization, x,
and the pair correlation, y, for a constant value of z =
0.2. Similar results are given in Fig. 23 for z = 0. The
entropy values shown in the uppér half of both figures are
hegative in some cases and greater than unity for some
values. Neither of these kind numerical are physically
realistic: the entropy must be £1 and can never be negative
for this system. The entropy values where obtained with the
program GRID 6 and the listing is given in Appendix E.

An attempt at reducing the magnitude of these non-
physical results is shown in the lower half of figures 22
and 23. This reduction is suggested by numerical techniques
which only use % of the value of the last term in a series

in order to speed-up convergence. We have used only % of
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3 (TRIPLE CORRELATION MOMENT)

T ]
sk 3=.2 _
-.42
= 61 .09 —.87 =
79 64 .40 .09-.57
4 - .80 .81 .71 61 .52 .45 =]
72 83 .80 .75 .72 .75 .851.06
2k 63.79 .80 .76 .73 .73 .80 .971.271.79
53 .75.78 .74 .68 .64 .63 .69 .821.06
o 39 .70 .77.73 .64 55 .46 .41 .39 .38 —
-32 56 .76 .76.66 .51 .35 .19 .03 -.17
-2} 77 7458 .35 .09-.21-58 -
50 .73.51 .16-.25--.78
-4k 57 .49-.03-.72 _
49-.17
gt Z111=48 —
-8} =
2
g -1L y (PAIR CORRELATION MOMENT) -
§. L | | | I | \ | | | g
E 1 -8 -6 -4 -2 0 2 4 8 1
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.09
6 66 .31 -.33 11
79 65 .38 .02-.60
A= 83 .79 63 .40 .13-21 —
83 85 .75 59 .39 .15-.11-.42
2 80 .87 83 .71 .54 .34 .12-.13 -.40-.68—
73 87 87 .79 .65 .47 .26 .02-.24-55
o 61 83 .88 .84 .73 .58 .38 .14 - 14-.48 -
12 68 .85 .87 .81 .67 .49 .25-.04 -.41
— o= 82 .85 .77 .60 .37 .08-.31 _
62 81 72 .52 .23-.17
-4 64 67 .42 .02 -
55 .31
-6 INCLUDES ONLY -
% THE 3-CLUSTER
-8 ENTROPY
L 3

Fig. 22. ENTROPY FOR 1,2,3-PARTICLE CLUSTERS vs. x,y WITH3=.2
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Fig. 23. ENTROPY FOR 1,2,3-PARTICLE CLUSTERS vs. x,y



the entropy contributon from the three particle cluster (the
last custer term in the truncated series) and re-calculated
the total entropy for the 1,2,3-particle clusters. The
results do show an improvement in the entropy wvalues: some
become less negative and all are %1. In Fig. 23 the entropy
value is unity for z = y = x = 0, as it should be for both
calculations.

The equilibrium free energy is plotted in Fig. 24
for the third approximation as a function of Tr. The
values were determined by the Simplex minimization
algorithm. A listing of the Simplex program is give in
Appendix E, and the essential steps are given in reference
[81].

As mentioned in the previous section (4.1) the
minimum occur on the boundary and the calculus minimazation
will not work. We have used the Simplex algorithm to &
minimize the truncated free energy equation. This
minimization technique is not a calculus type minimization
method and can be used to obtain minima which are located on
the boundary.

In Fig. 24 the equilibrium values are denoted by "X"
for & when no correction is made to the entropy contribution
of the third term in the truncated free energy. These
values for 8 are very different than the solid curves which

are the equilibrium values for the free energy that were
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obtained in the earlier approximations and re-plotted in
Fig. 24. It was noted previously that the numerical value
of Beq. would not change very much for the higher order
approximations as compared to the approximations for 1,2-
particle clusters. To evaluate the effect of only using %
of the entropy contribution of the third term, as was done
in Figs. 22 and 23, the values of § were re-calculated using
only % of the third term. These results are dénoted by the
large black dots, and show good agreement with the earlier

results.

Fourth Order Approximation: (4-Cluster)

The following is a list of the principal steps in this
derivation.
The Helmholtz Free Energy is given as F = U - TG.

1. Calculate U.

2. Calculate S. ~ indicates intrinsic entropy.
S = S°(1) + 87(2) + S8°(3) + S°(4) (11)
S*(1) is the same as in the 1-c approximation.
S7(2) " 2-c "
Sh(a) " 3_c "
S~(4) = S(4) - AS(3) + B6S(2) - 45(1)

S(1),8(2),8(3) are known from the earlier
approximations and are given as R1,R2,R3, respectively in
the program SIM4,see the listing in Appendix E.

S(4) is determined from P(4) (M’...0’’’) which is the
probability distribution for only 4 particles. (See

section 3.3). The equations for this distribution are
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denoted by R4 in SIM4, (see Appendix E). (Note that "R" is
used to represent entropy in SIM4.) The total entropy, R, is

given as follows

R = Rl + [21/2]1(R2-2R1) + [Z111/6](R3-3R2+3R1)

+ [Z111111/24](R4-4R3+6R2-4R1) (12)
Z1 is the pair coordination number
Z111 is the triplet coordination number
7111111 is the 4-particle coordination number

Z1,Z2111 are known from the previous approximations. Z111111

is the only new coordination number.

3. The Helmholtz free energy is given as,

§ = -Brx - %Z1y + Tr (R) (13)
§, Bc and Tr are the reduced free energy, magnetic field
and temperature respectively.

4. Minimize the free energy, and obtain the minimum value of
3. The probabililty distribution associated with this
minimum value of 8 is the equilibrium macrostate for this
system. From this macrostate all gquantities of
thermodynamic interest can be derived by the standard
formulas.

The following is a description of the 4-cluster
approximation results for the FCC lattice.
Internal Energy:
U = < Hamiltonian > = - PoBNx - %JNZ(1l) <pip2>
These quantities have been previously defined and the

definitions are repeated here.

Mo is the magnetic moment of each particle
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B is the external magnetic field
N is the number of particles in the system
x is the magnetization per particle
The interaction energy is given by the second term.
J is the exchange integral
Z1 is the pair coordination number
¥1 is the microstate of one of the particles in the
pair and M2 is the microstate of the other
particle. This pair of particles are nearest
neighbors (n.n.) and the average value of the
product of the two microstates is called yi, the
pair correlation coefficient.
U can be written as,
U = N[-MFoBx - %JZ1y1]
Entropy:
The entropy for this 4-cluster approximation is given
by,
S = 8°(1) + S°(2) + §7(3) + S7(4)
The intrinsic entropy for each cluster is represented by S
with a superscript " ~ ", and each cluster approximation by
a number, i.e. S°(2) is the intrinsic entropy for the second
approximation. The intrinsic éntropy for each approximation
is written as follows.
S°(1) = 8(1) for the first approximation, since there
is only one particle in each cluster and it is not necessary

to correct for the prescence of any other clusters. ©G(1) 1is
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given by the entropy for the one-particle exact calculation,
see section 3.0.
S (1) = S(1) = -ke[%(1+x)Ink(l+x) + %(1-x)ln¥k(l-x)] (14)
The intrinsic entropy for the 2-cluster is written as,
S*(2) = Li, [S(2)i,;5 - S(1)i - S(1)j]

S7(2)

XKNEpZp[S(2)i,i+p — 25(1)4i]
S(2)i,1+p is the entropy derived in the exact calculation

for two particles, see section 3.1, and is given as,

S(2) = -ks[¥(1+2x+yp)ln(.) + %(l-yp)ln(.) + %(l-Zx+yp)ln(.)]
(15)

§(1) is the same as above. Then S°(2) is given as,

S°(2) = -%NkeLpZp{[%(1+2x+yp)ln(.) + %(l-yp)ln(.)

+ %(1-2x+yp)In(.) 1 - 20%(l+x)In(.) + %(1-x)In(.)]}
The intrinsic entropy for the 3-cluster is written as,
S°(3)’ = S(3) - 28(2)p=1 =- S(2)p=2 + 35(1)
S(3) is the entropy derived in the exact caléulétion for
three particles, see section 3.2, and is given as,
S(3) = -kn[(1/8)(1+3x+2y1+y2+z112)1ln(.)
+ 2(1/8)(1l+x-y2-2z112)1ln(.)
+ (1/8)(1-x-2y1+y2+z112)1In(.) + (1/8)(1+x-2y1+y2-z112)1ln(.)
+2(1/8)(1-x-y2+z112)1ln(.) + (1/8)(1-3x+2y1+y2-z112)1n(.)]
(16)
S(2) and S(1l1) are the same as given above. The intrinsic
S°(3) 1is giyen in the previouslsection.
The intrinsic entropy for the 4-cluster is
S(4) = S(4) - 45(3) + B5(2) - 49(1)

All terms in this equation have been previously defined.
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S(4), the exact distribution for only 4 particles, is given
in section 3.3. S(1), 8(2), S(3) are given by Egs.
(14),(15),(16) respectively.

The total entropy for the first, second, third and
fourth cluster is given by Eqs. (11),(12). In SIM4 the
total entropy for these four clusters is denoted by R.

Free Energy:

The free energy is given by Eq. (13) and 1is

denoted by line 190 in SIM4 (Appendix E, Fig. 32).
Minimization:

The minimization of the free energy is calculated

with SIM4 and the results presented in Fig. 26.
Discussion: .

The entropy values for the first four clusters are
shown in Fig. 25 in a similar way as the entropy values are
given in Figs. 22 and 23 for the third order approximation.
(These values were calculated with the program GRID6 that is
listed in Appendix E as Fig. 34). The entropy as a function
of x and y is given in Fig. 25 for z = w = 0 in the upper
half of the figure, and for z = w = 0.2 in the lower half.
In this case however it is not necessary to adjust these
entropy values as was done in the third order approximation.
The values are plausible and physically acceptable - none

are >1 and none are negative. Note also that for x = y = z

= w = 0 the entropy has a maximum value of unity as it should.

The equilibrium free energy is given in Fig. 26 as a
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function of the reduced temperature Tr and 1s denoted by
"x". The reduced magnetic field is zero. The solid curve
is the equilibrium free denergy for a l-particle clusters
and as previously noted these equilibrium vaues will not
change very much with higher order approximations. The
equilibrium values are also given in Table 1, Appendix G.
For any wvalue of Tr, the minimization program SIM4 may
calculate values for equilibrium & which are more negative
than those plotted in Fig. 26 and represented by "x". The
correlation values x,y,z,w for these more negative § values
will be less acceptable than the correlation wvalues
associated with the less negative value of §. Table 2 in
Appendix G gives values of x,y,z,w for Tr = 4,8,10,16. The
values of 8 plotted in Fig. 26 also agree very closely with
the equilibrium & values for the lower order approximations.
The reason that other values are calculated for § is that
these other equilibrium values are associated with the
spurious minimum that are located on the boundary. These
values of 8§ are too low and the values of x,y,z,w associated
with them are physically unacceptable. The entropy
calculated for these 8 values will be negative. These were
the criteria used in selecting the § values that are plotted

in Fig. 26.
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Linear Lattice:

- g

See Fig.27

Square Lattice:

Line#

el i v

APPENDIX A

COORDINATION NUMBERS

Isingl.BAS

D LN -]

H
CwogomibkwhhEHO

b
INYS

wpprr O

—

AN N )
N

> N

Z(2) p

DO O W 0O W 0D CO v Wb 00 > i i

J2

45
J5

122

Db b B WWWHN NN g

Z{3)pqr

12
12

.41421356

.23608797
.82842712

.16227766
.605655127

.12310562
. 24264068
.47213585

2(3) pqgr
24
12
48
48
24

:Ising2.BAS



Cubic Lattice:

"4-cube”

OO~k whe= O
Ho
o]
®
n

N T e
B> wh- O

a2 g

Lattice:

Line#

o~ mbdWwNEHRO

ol >,

NN

2(2)p

42

N3
2

123

BB R R WDOWWWWNNNNFE -

WNHNNDNDND =Y

.41421356
.7320508

.23806797
.44948974
.82842712

.16227766
.31662479
.46410161
.60555127
.74165738

.12310562
.24264068
.35889894
.47213595
.58257569
.69041576
.89897948

Z2( 3) pgr
72
18
144
48

.41421356
.7320508

.23608797
.44948974
.64575131
.82842712
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“"5-cube" Lattice:

Line# Z(2)p P
0 10 1
1 40 1.41421
2 80 1.73205
3 90 2
4 112 2.23607
5 240 2.44949
6 320 2.64575
7 200 2.82843
8 250 3
9 = —
10 - -
"g-cube"” Lattice:
Line# Z{2)p P
0 12 1
1 60 1.41421
2 160 1.73205
3 252 2
4 312 2.23607
5 544 2.44949
6 960 2.64575
7 1020 2.82843
8 876 3

Some General Results for "n-cube” lattices:

smallest clusters

D Z1 Z112 2112721
1 2 6 3

2 4 24 6

3 6 72 12

4 8

5 10

6 12
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APPENDIX B
ISING1 PROGRAM
Regarding the program ISING1.BAS for computing
Z(2)p--pair coordination numbers, we list the following
rules. (See Fig. 27)

1. Put one particle at the origin of the lattice. Put
the other particle at the location specified by the lattice
numbers N1,N2,...,ND = !N (where D = dimension of the
lattice).

Since the lattice is generated by the basis vectors
B1->, B2->,...,BD-> = |B-> by the rule
r-> = LiNtBt-> ,
then the location (of the particle) specified by !N has
cartesian coordinates
r = ZiNI(Br)->;
where (Br )->; are the cartesian coordinates of !B->
This is the location rule.
The "n-cube"” lattices are:

n - cube
linear lattice
square lattice
cubic lattice
hyper - cube lattice

who knows what it is called?
etc.

[o )& I VN ST e |
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These lattices are generated by the "standard"
orthonormal basis, whose cartesian components are
(Br);j=-> = &j1.

The distance rule is given by the following. The

distance between the particle at the origin, and the one

specified by |N is

P r=>- 0> !} =

L3 [Z1NI (Br->)j ]2

Vom0 1
T2

For "n-cube" lattices, this is

P = J[Z;(Z1N1§j1)2]
= J[EZ;iNj2].
2 Step over all values of !N,

reject P if (a) P = 0 (we have accidentally put the
roving particle at the origin)

(b) P > Pmax (we have an {N that puts the
roving particle too far from the
origin)

3. We keep a list, P(I), of distinct values of P, always
arranged in ascending order. We keep a second list, C(I),
of the number of times the distance P(I) has been obtained.

These lists are initialized to { C(I)

0 }
{ P(I) = Pmax+1 }
Upon moving the roving particle to each new location,
and computing P, we scan the list P(I) starting from the
smallest value (at the top). For each value of I (I=0 to

Imax), we compare P with P(I):
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(a) if P = P(I), then we increment the counter C(I),
C(I)+1, and then quit the comparison.

(b) if P < P(I), then we recognize that we have
encountered a new value of P, which we must insert into the
list. So we pause to open up a space in the list, by moving
all values from the current value P(Il) to the top of the
-1list P(Imax) down by one. And we also move the counters.
(Of course, P(Imax) and (Imax) fall off the end of the

lists.)

For J = Imax to I step-1
P(J+1) = P(J)
C(J+1) = C(J)
Next J
We then insert P at location I, and set its counter to 1:
P(I) = P
C(I) = 1
We then quit the comparison.

(c) if P does not match any value on the list, we ignore
it

4. After the roving particle has moved over its entire
domain, we print the results:
For I = 0 to Imax
Print I, P(I),C(I)
Next I

Of course, we can read this as
p, Z{2)p .
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150 REM N=2

160 REM

170 OPTION BASE 1

172 CLEAR

174 POKE 18,0:POKE 19,0:POKE 20,0:
180 DIM B(3,3)

200 REM DEFINITION OF BASIC VECTORS
210 REM B(I,X) is Xth component of Bi
220 B(1,1)=1 : B(1,2)=0 : B(1,3)=0
230 B(2,1)=0 : B(2,2)=1 : B(2,3)=0
240 B(3,1)=0 : B(3,2)=0 : B(3,3)=1
250 MAX=2:M2=MAXxMAX

260 DIM R(3),C(M2)

300 FOR I=-MAX TO MAX

310 FOR J=-MAX TO MAX

320 FOR K=-MAX TO MAX

330 FOR L=1 TO 3

340 R(L)=I%B(1,L)+JxB(2,L)+K*B(3,L)
350 NEXT L

360 D=R(1)*R(1)+R(2)*R(2)+R(3)*R(3)
370 IF (D=0) OR (D>M2) THEN 400
380 C(D)=C(D)+1

400 NEXT K

410 NEXT J

412 PRINT "I=";I

420 NEXT I

490 OPEN #1,"P:" OUTPUT

500 PRINT #1,"D ";"Z(D)"

510 FOR D=1 TO M2 :

520 PRINT #1,D;" ";C(D)

522 PRINT D;" ";C(D)

530 NEXT D

800 CLOSE #1

FIGURE 27. Program Isingl for Calculating Coordination
Numbers
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APPENDIX C
ISING2 PROGRAM
Regarding the program ISING2.BAS for computing
Z(3)pgqr ---triangle coordination number. Put one particle
x at the origin of the lattice. Put another # at
a location specified by |M and a third r at a

location specified by |N. Then

> = 0->

r->

L1 NI Br->
rr-> = E1NiBr->
The distances between the particles are

Do SSUMErate St i R T

J{Zj[Z1M (Br->);]2}

Dar = jira=> - >l o= [lero> i

J{Zj [N (Br->);12}

Der = o> - xrod

S{Zj[Zr (M - Nr)(Bi-->);jl2}

For "n-cube" lattices these are:

Dx = J(ZjMj2)
Dxr = J(E3N;2)
Deox = ~J[Zj(Mj - Nj)2]

2. Step A and r throughout the entire region

surronding x. Arrange Dx@, Dxr,and Dar
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into ascending order:

(Dx3 ,Dxr ,D8M) --> (P,Q,R)

i.e. ascending order where P < = Q < = R.
At each pair of locations, compute Dx@, Dxr , Dar.
Go immediately to the next location if

(a) any of these are 0 (at least one particle has
accidently been placed on top of another).

(b) any of these exceed Dmax (at least one particle
has gotten too far away).
3. There are only certain possible distances between
lattice points. We know what these are from the "Z2p"
work. Call these possible distances, A,B,C,..., and
arrange them in ascending order. Then the combinatorially

possible 3-tuples are

AAA

AAB . ABB

AAC ABC ACC
AAD ABD ACD
AAE ABE ACE
BBB

BBC BCC

BBD BCD BDD
BBE BCE BDE
CcC

CCD CDD

CCE CDE CEE

0Of course, not all of these combinatorially possible
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p-tuples is a possible triangle on a given lattice; for
example, in l1-dimension, Dxf + Dir = Dx". In practice we
are only interested in "small" triangles. ©So in practice,
we will cut off each sequence when the corresponding
triangle is "too big". We can now assign each remaining
3-tuple a counting number I, and a counter C(I). We
increment this counter whenever P,Q,R passes the appropriate
entrance requirement.

For n-cube lattices, the possible distances are m,
m=1,2,3,... . (Not all values of m occur for smaller n-cube
lattices.)

So:

FOR J = 0 TO 4

D(J) = SQR(J)
NEXT J
loads a more-than-adequate set into D(.). We might prefer
to do this "by hand" for each explicit lattice, to ensure
that only distances possible for that lattice occur.
Anyway, D(.) is to contain the possible distances.
Here is a possible scheme, for n-cubic lattices, that cuts

off.
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TABLE 1

TRIANGLE COORDINATION NUMBER

I | P Q I R

0 D(0) D(0) D(0)
1 D(0) D(0) D(1)
2 D(0) D(0) D(2)
3 D(0) D(0) D(3)
4 D(0) D(1) D(1)
5 D(0) D(1) D(2)
8 D(0) D(0) D(3)
7 Doy t D(2) D(2)
8 D(0) D(2) D(3)
g D(0) B3] | D(3)
10 D(1) D(1) D(1)
11 D(1) D(1) D(2)

T -

See figure 28.
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100 REM THIS PROGRAM COMPUTES

110 REM N-COORDINATION NUMBERS (FCC)

130 REM 4 DEC 1985 (copied from ISING3.msb 16 feb 1985)
140 REM

150 REM N=3

160 REM

170 OPTION BASE 1

172 CLEAR

174 TIME=0

176 F$="scrn:"

178 OPEN F$ FOR OUTPUT AS #1

195 DEFINT A-2Z

200 REM DEFINITION OF BASIS VECTORS

210 REM B(I,X) is the Xth component of Bi
212 DIM B(3,3)

214 REM FACE CENTERED CUBIC

220 B(1,1)=1 : B(1i,2)=1 : B(1,3)=C

230 B(2,1)=0 : B(2,2)=1 : B(2,3)=1

240 B(3,1)=1 : B(3,2)=0 : B(3,3)=1

250 MAX=2

260 M2=MAXxMAX

270 DIM C(M2,M2)

280 DIM R1 (3),R2(3)

300 FOR I1=-MAX TO MAX

302 FOR J1=-MAX TO MAX

304 FOR Ki1=-MAX TO MAX

306 FOR L=1 TO 3

308 R1 (L)=I1xB(1,L)+J1xB(2,L)+K1*B(3,L)
310 NEXT L

312 D1=R1(1)*R1(1)+R1(2)*R1(2)+R1(3)*R1(3)
314 IF (D1=0) OR (D1>M2) THEN 450

320 FOR I12=-MAX TO MAX

322 FOR J2=-MAX TO MAX

324 FOR K2=-MAX TO MAX

326 FOR L=1 TO 3

328 R2(L)=I2%B(1,L)+J2%B(2,L)+K2%*B(3,L)
330 NEXT L

332 D2=R2(1)*R2(1)+R2(2)*R2(2)+R2(3)*R2(3)
334 IF (D2=0) OR (D2>M2) THEN 400

338 D3=0

340 FOR L=1 TO 3

342 R3=R1(L)~R2(L):D3=D3+R3*R3

344 NEXT L

FIGURE 28. Program Ising2 for Calculating Coordination
Numbers
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346
348
400
402
404
450
460
470
500
510
512
522
524
530
534
536
600
5000
5010
5020
5030
5040
5050
5060
6000
6010
6020
6030
6040
6050
6060
6070
6080
6085
6080

IF (D3=0) OR (D3>M2) THEN 400
GOSUB 6000

NEXT K2

NEXT J2

NEXT I2

NEXT K1

NEXT J1

NEXT I1

PRINT #1,"D1, D2, Zz(Db1,D2)"
FOR D1=1 TO M2

" TIMES; " . "

FOR D2=1 TO M2
PRINT #1,D1;" "“;D2;" ",C(D1,D2)
PRINT D1;" ";D2;" ";C(D1,D2)
NEXT D2,D1
PRINT #1, "This calculation took
PRINT #1:PRINT TIMES$
CLOSE #1
P=D1
IF D1>D2 THEN T=D1:D1=D2:D2=T
IF D2>D3 THEN T=D2:D2=D3:D3=T
IF D1>D2 THEN T=D1:D1=D2:D2=T
C(D1,D2,D3)=C(D1,D2,D3)+1
Di1=P
RETURN
D(1)=D1:D(2)=D2:D(3)=D3:P1=D1
M=3
FOR G=M-1 TO 1 STEP -1
FOR F=1 TO G
IF D(F)>D(F+1) THEN SWAP D(F),D(F+1)
NEXT F
NEXT G
D1=D(1):D2=D(2):D3=D(3)
C(D1,D2)=C(D1,D2)+1
D1=P1
RETURN

FIGURE. 28 continued
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APPENDIX D
CLUSTERS OF 4-PARTICLES

This appendix describes the calculation of the

coordination number for a cluster of four particles. Two
pieces of information are obtained from the calculation:
(1) the shape of the most compact figure for 4-particles and
(2) the number of these most compact figures which is called
the cordination number. The particles are fixed in position
at the lattice sites of the crystal (see Fig. 1, Ch. I)

Fig. 29 is a diagram of the method used in ISING4F
to calculate the distances between the particles. Use one
of the particles as the origin and draw a vector to each of
the other three particles which are called the "rovers" and
labeled 1,2,3. Calculate the distances corresponding to
these 3 vectors and the distances between each of the 3
“rovers". The vectors and the associated distances are
labeled as shown in Fig. 29.

The calculation of the six distances are calculated
and stored by ISINGAF for each particle that is choosen as
an origin. The distances are sorted and the number of
similar figures are counted. The results for the 4-cluster
case are given in Fig. 30 and show that the most compact

‘figure is an equilateral pyramid with six sides egqual and
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that there are 48 of them. The fact that all six sides are
equal length is an important distinction. This has been
+rue for the calculations in this study. It will not be
true for higher order clusters e.g. 5-cluster and 6-cluster
configurations. This means that the entropy calculation
will be done in a different way than described in this work.
Fig. 31 is a listing of the steps in the program
ISING4F to carry out this calculation for an FCC latice.
Other lattices are possible by changing the values in lines

160 to 180 to represent other lattice sites.
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4-CLUSTER

3 “rovers” (1), (@), @

ORIGIN

Iﬂ D1
R2 D2
—

R3 D3
—

R_1’2 D12
R_l3 D13
R23 D23

Fig. 29. DIAGRAM OF A 4-PARTICLE CLUSTER SHOWING THE
ORIGIN AND 3 “ROVERS”. THE VECTORS R1 THRU R23 AND
CORRESPONDING DISTANCES D1 THRU D23 ARE USED IN THE
PROGRAM ISING 4F TO CALCULATE THE NUMBER OF THE MOST
COMPACT FIGURES FOR AN FCC LATTICE.
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10 REM THIS PROGRAM COMPUTES

20 REM N-COORDINATION NUMBERS (FCC)

40 REM 4 DEC 1985 (converted from ISING3.msb 16 feb 1985)
50 REM see pg. 18/VIII and .
60 REM N=4

70 REM

80 OPTION BASE 1

90 CLEAR

100 TIME=0

102 F¢="1ptl:"

104 OPEN F$ FOR OUTPUT AS #1

110 DEFINT A-Z

120 REM DEFINITION OF BASIS VECTORS

130 REM B(I,X) is the Xth component of Bi
140 DIM B(3,3)

150 REM FACE CENTERED CUBIC

160 B(1,1)=1 : B(1,2)=1 : B(1,3)=0

170 B(2,1)=0 : B(2,2)=1 : B(2,3)=1

180 B(3,1)=1 : B(3,2)=0 : B(3,3)=1

190 MAX=2

200 M2:=MAX%*MAX

210 DIM C(M2,M2,M2,M2,M2,M2)

220 DIM R1(3),R2(3),R3(3)

230 FOR I1=-MAX TO MAX

240 FOR J1=-MAX TO MAX

250 FOR K1=-MAX TO MAX

270 FOR L=1 TO 3

280 R1 (L)=I1xB(1,L)+J1%*B(2, L)+K1*B(3 L)
290 NEXT L

300 D1=R1(1)*R1(1)+R1(2)*xR1(2)+R1(3)*R1(3)
310 IF (Di=0) OR (D1>M2) THEN 710

320 FOR 12=-MAX TO MAX

330 FOR J2=-MAX TO MAX

340 FOR K2=-MAX TO MAX

350 FOR L=1 TO 3

360 R2(L)=I2%B(1,L)+J2%B(2,L)+K2%B(3,L)
370 NEXT L

380 D2=R2(1)*R2(1)+R2(2)*R2(2)+R2(3)*R2(3)
390 IF (D2=0) OR (D2>M2) THEN 700

400 FOR I3=-MAX TO MAX

410 FOR J3=-MAX TO MAX

420 FOR K3=-MAX TO MAX

430 FOR L=1 TO 3

440 R3(L)=I3%B(1,L)+J3*%B(2,L)+K3*xB(3,L)

FIGURE 31. Program Ising4f for Calculating
Coordination Number for a 4-cluster
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450
480
470
480
4390
500
510
520
530
540
550
560
570
580
590
600
610
620
630
635
690
700
710
720

730
740
750
752
754
756
760

765

770
780
6000

6010
6020
6030
6040
6050
6060
6070
6080
6085
6080

NEXT L

D3=R3(1)*R3(1)+R3(2)*R3(2)+R3(3)*R3(3)

IF (D3=0) OR (D3>M2) THEN 680

D12=0

FOR L=1 TO 3

R12=R1(L)-R2(L):D12=D12+R12%R12

NEXT L

IF (D12=0) OR (D12>M2) THEN 690

D13=0

FOR L=1 TO 3

R13=R1(L)-R3(L):D13=D13+R13%R13

NEXT L

IF (D13=0) OR (D13>M2) THEN 690

D23=0

FOR L=1 TO 3

R23=R2(L)-R3(L):D23=D23+R23*R23

NEXT L

IF (D23=0) OR (D23>M2) THEN 690

REM BUBBLE SORT

GOSUB 6000

NEXT K3,J3,13

NEXT K2,J2,12

NEXT K1,J1,I1

PRINT #1,"D1, D2, D3, Di2, D13, D23
Z(Db1,D2,D3,D12,D13,D23)"

FOR D1=1 TO M2

FOR D2=1 TO M2

FOR D3=1 TO M2

FOR D12=1 TO M2

FOR D13=1 TO M2

FOR D23=1 TO M2

PRINT #1,D1;" ";D2;" D3 S Be * > DI

D23; C(Dl D2 D3 D12 D13 D23)
PRINT D1;" ";D2;" ";D3;" ;D123 D13

D23;" " C(Dl D2, D3 D12, D13 D23)
NEXT D23,D13,D12,D3,D2,D1
CLOSE #1

D(1)=D1:D(2)=D2:D(3)=D3:D(4)=D12:D(5)=D13:
D(6)=D23:P1=D1

M=6

FOR G=M-1 TO 1 STEP -1

FOR F=1 TO G

IF D(F)>D(F+1) THEN SWAP D(F),D(F+1)

NEXT F

NEXT G

D1=D(1):D2=D(2):D3=D(3):D12=D(4):D13=D(5):D23=D(86)
c(D1,D2,D3,D12,D13,D23)=C(D1,D2,D3,D12,D13,D23)+1
D1=P1

RETURN

FIGURE 31. continued
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APPENDIX E
PROGRAM LISTINGS

There are three programs listed in this appendix.
Fig. 32 is a listing of SIM4 used to obtain the equilibrium
(minimum) free energy for the fourth approximation which is
the sum of the first, second, third and fourth term of the
Morita expansion. The minimization program for lower order
approximations can be obtained by deleting the equations for
the higher order clusters. The Simplex minimization that is
used here is described in reference 6._

Fig. 33 is a listing of HIDDEN6 that is used for
making the contour plots shown in the text. This program is
described in reference [24-26].

The program GRID6 listed in Fig. 34 was used to
calculate the entropy values in the third and fourth

approximations that were plotted as a function of x,y.
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10

20

- 30

40
50
60
70
80
90
99
- 100
110
120
122
124
130
140
150
160
162
163
164

170
172
174
1786

180
182
130
298
299
330
340
350
360
370
380
390
400
410
420
430
440
450
460

REM *x%xPROGRAM NAME IS ’SIM4.BAS’, BECAUSE IT DOES A
'SIMPLEX’ MINIMIZATION
REM *x*xON THE 4-CLUSTER ISING MODEL
REM *x*COPIED FROM ’'SIMS.BAS’ RUNNING ON HEN'S PDP-11
REM *x%21-MAR-1985
RANDOMIZE
21=12:7111=48:2111111=48
TR=2
BR=0
GOTO 330
REM xxPUT THE FUNCTION TO-BE-MINIMIZED HERE...
ON ERROR GOTO 299
X=A(0)
Y=A(1l)
Z=A(2)
W=A(3)
P1=(1+X)/2 : P2=(1-X)/2
R1=P1xLOG(P1)+P2xLOG(P2)
P21=(1+2%X+Y)/4:P22=(1-Y)/4:P23=(1-2%X+Y) /4
R2=P21xLOG(P21)+2%P22%L0OG(P22)+P23*L0OG(P23)
P31=(1+3%X+3%Y+Z)/8:P34=(1-3%X+3%Y-Z)/8
P32=(1+X-Y-2)/8:P33=(1-X-Y+Z)/8
R3=P31%LOG(P31)+P34%xLOG(P34)+3*xP32xLOG(P32)
+3%P33xLOG(P33)
P41=(1+4%X+6XY+4%Z+W)/16:P43=(1+2%xX~-2%Z2-W) /16
P42=(1-4%X+6XY-4%Z+W)/16:P44=(1-2%xX+2%Z2-W) /16
P45=(1-2%Y+W) /16
R4=P41%LOG(P41)+P42*%LOG(P42)+4%(P43*xLOG(P43)
+P44%1,0G(P44) )+6%P45%LOG(P45)
R=R1+(Z1/2)*(R2-2%R1)+(Z111/6)*(R3-3%R2+3%R1)
R=R+(Z111111/24)*(R4-4X%R3+6%R2-4%R1)
F=-BR*X-(Z1/2)xY+TR*R
ON ERROR GOTO 0:RETURN
F=1E+35:RESUME 298
N=4
I1=0
DIM X(5,5),M(5),V(5),R(5),E(5),C(5),A(5)
FOR I=0 TO N-1
READ M(I),V(I)
NEXT I
FOR J=0 TO N
FOR I=0 TO N-1
X(I,J)=M(I)+RNDXxV(I)
NEXT I
NEXT J
F7=1E+37 : F9=-F7
V7=-1 : V9=-1
FOR J=0 TO N

FIGURE 32. Program SIM4
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470 FOR I=0 TO N-1

480 A(I)=X(I,J)

490 NEXT I

500 GOSUB 100:X(N,J)=F

510 IF F<F7 THEN F7=F : V7=J

520 IF F>F9 THEN F9=F : V9=J

530 NEXT J

540 IF V7=-1 THEN PRINT"F-MIN NOT FOUND" :STOP
550 IF V9=-1 THEN PRINT"F-MAX NOT FOUND" :STOP
560 IF V7=V9 THEN PRINT"F-MIN = F-MAX!!!":8STOP
570 PRINT"ITTERATION #";I1:I1=I1+1
580 FOR J=0 TO N

590 PRINT J;" ";

600 FOR I=0 TO N

610 PRINT X(I,J);" ";

620 NEXT I

630 PRINT

640 NEXT J

650 PRINT

660 FOR I=0 TO N-1

670 S=0

680 FOR J=0 TO N

690 IF J<>V9 THEN S=S+X(I,J)

700 NEXT J

710 M(I)=S/N

720 V(I)=X(I,V9)-M(I)

730 R(I)=M(I)-V(I)

740 A(I)=R(I)

750 NEXT I

760 GOSUB 100 :F1=F

770 IF F1<=F7 THEN 910

780 IF F1<=F8 THEN 1020

790 FOR I=0 TO N-1

800 C(I)=M(I)+V(I)/2 : A(I)=C(I)
810 NEXT I

820 GOSUB 100 : F2=F

830 IF F2<=F8 THEN 1070

840 FOR I=0 TO N-1

850 FOR J=0 TO N

860 IF J<>V7 THEN X(I,J)=(X(I,J)+X(I,V7))/2
870 NEXT J

880 NEXT I

890 PRINT"CONTRACT ENTIRE SIMPLEX™
900 GOTO 1120

910 FOR I=0 TO N-1

920 E(I)=M(I)-2%V(I):A(I)=E(I)

930 NEXT I

940 GOSUB 100:F3=F

950 IF F3<=F7 THEN 870

960 GOTO 1020

FIGURE 32 continued
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970 FOR I=0 TO N-1
980 X(I,V9)=E(I)
990 NEXT I

1000
1010
1020
1030
1040
1050
10860
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160

PRINT"ACCEPT EXPANDED VERTEX™
GOTO 1120

FOR I=0 TO N-1

X(I,V9)=R(I)

NEXT I

PRINT"ACCEPT REFLECTED VERTEX"
GOTO 1120

FOR I=0 TO N-1

X(1,V9)=C(I)

NEXT I

PRINT"ACCEPT CONTRACTED VERTEX"
GOTO 1120

GOTO 440

DATA .0
DATA .0
DATA .0
DATA .0

wWwww

FIGURE 32 continued
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1 'From NIBBLE/Vol 4/No. 8/pp 61-71

2 'Xfered to Jack’s COMPAQ on 3-27-86 by HL
3 b

4 CMAX=639:RMAX=199

5 Z1=12

6 TR=10

7 BR=0

90 DIM H(CMAX),L(CMAX)

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
272
278
280
283
284
285
286
288
300
310
320
330
340
350
360
370
380
380
400
410
420
430
440
450

MM=1E+10:UH=-MM:UL=MM: VH=-MM: VL=MM
FOR I=0 TO CMAX:L(I)=RMAX:NEXT
XE=2/2.5:YE=1/2.5:2E=1/2.5

81 =XExXE+YEXYE:52=SQR(S1):53=0QR(S1+ZE*ZE):54=1/(8S2*533)
M=20:N=20

DIM X(M),Y(N),R(M,N,1)
XL=-1:XH=1:YL=-1:YH=1
DX=(XH-XL)/M:DY=(YH-YL) /N

X0=XH:IF XE<OQO THEN DX=-DX:X0=XL
YO=YH:IF YE<O THEN DY=-DY:YO=YL
CX=(CMAX+1)/2:CY=(RMAX+1)/2

FOR I=0 TO M:X(I)=X0-I%*DX:NEXT

FOR J=0 TO N:Y(J)=Y0-J*DY:NEXT

FOR I=0 TO M:FOR J=0 TO N
X=X(I):Y=Y(J)

’ Replacable function
Y Z=F(X,Y)

P1=(1+X)/2:P2=(1-X)/2

IF P1<=0 OR P2<=0 THEN PHI=0:GOTO 300
SS1=P1xLOG(P1)+P2*xLOG(P2)
P21=(1+2%X+Y)/4:P22=(1-Y)/4:P23=(1-2%X+Y) /4

IF P21<=0 OR P22<=0 OR P23<=0 THEN PHI=0:GOTO 300
S$82=P21xLOG(P21)+2%P22xLOG(P22)+P23*xLOG(P23)
PHI=-BR*X~-(Z1/2)*Y+TR*(SS1+(Z1/2)%(882-2%551))

IF PHI>2 THEN PHI=2

Z=PHI/20+.5

GOSUB 880
R(I1,J,0)=U:R(I,J,1)=V:GOSUB 1420

NEXT J:PRINT "I=";I,"MAX=";M:NEXT I

’S is the scale factor

S=MM: IF UL=0 THEN 380
SO0=CMAX/(2.1%ABS(UL)):IF S0<S THEN S$=S0
IF UH=0 THEN 400
S0=CMAX/(2.1%ABS(UH)):IF S0<S THEN S5=850
IF VL=0 THEN 420
SO=RMAX/(2.1%ABS(VL)):IF S0<S THEN S$=80
IF VH=0 THEN 450
SO=RMAX/(2.1%ABS(VH)):IF S0<S THEN 5=S0
'Locate in HGR2 coordinates

FOR I=0 TO M:FOR J=0 TO N

FIGURE 33. PROGRAM HIDDENG6
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480
470
480
490
492
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
850
860
870
880
890
900
910
920
930
940
950

R(I,J,0)=INT(S*R(I,J,0)+CX):R(I,J,1)=INT(S*R(I,J,1)+CY)
NEXT J:NEXT I

'Start graphics

KEY OFF:SCREEN 2

CLS

IF ABS(XE)<ABS(YE) THEN 670

FOR I=0 TO M

'Draw fixed X-lines

FOR J=1 TO N
U1=R(I,J-1,0):V1=R(I,J-1,1):U2=R(I,J,0):V2=R(I1,J,1)
GOSUB 950:'Test visibility, and plot...

GOSUB 1220:’Update H,L arraws

NEXT J

IF I=M THEN 650

'Draw fixed Y-line segments

FOR J=0 TO N
U1=R(I,J,0):V1=R(I,J,1):U2=R(I+1,J,0):V2=R(I+1,J,1)
GOSUB 950:°'Test visibility, and plot... !
GOSUB 1220:°’Update H,L arrays

NEXT J

NEXT I

GOTO 820

FOR J=0 TO N

‘Draw fixed Y-lines

FOR I=1 TO M
Ui=R(I-1,J,0):V1=R(I-1,J,1):U2=R(I,J,0):V2=R(I,J,1)
GOSUB 950

GOSUB 1220

NEXT I

IF J=N THEN 810

'Draw fixed X-line segments

FOR I=0 TO M
U1=R(I,J,0):V1=R(I,J,1):U2=R(I,J+1,0):V2=R(I,J+1,1)
GOSUB 950

GOSUB 1220

NEXT I

NEXT J

PRINT CHR$(7):’Here is a chance to get printed output.

END
’
'Transformation subroutine

)

U= (XEXY-YE*X) /S2

V= (ZEX* (X*xXE+Y*YE)~-S1%Z)*S4
RETURN

'Wright’s algorithm!!!
T1=0:T2=0:G1=0:G2=0

FIGURE 33. continued
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960 IF V1>=H(Ul) THEN T1=1
970 IF V2>=H(U2) THEN T2=1
980 IF V1<=L(Ul) THEN G1l=1
990 IF V2<=L(U2) THEN G2=1

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
11860
1170
1180
11380
1200
1210
1220
1230
1240
1250
12860
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370

1380
1390
1400
1410
1420
1430
1440
1450
1460

IF Ti=1 AND T2=1 THEN LINE(U1,V1)-(U2,V2):RETURN
IF Gl=1 AND G2=1 THEN LINE(U1,V1)-(U02,V2):RETURN
IF T1+T2+G1+G2=0 THEN RETURN

GOSUB 1370

IF KM=KX THEN 1160

F1=0:F2=0

FOR K=KM TO KX

VK=VM+(VX-VM) *(K-KM) / (KX-KM)

IF VK>H(K) OR VK<L(K) THEN U1=K:V1=VK:F1=1:K=KX
NEXT

FOR K=KX TO KM STEP -1
VK=VM+(VX-VM) % (K-KM) / (KX-KM)

IF VK>H(K) OR VK<L(K) THEN U2=K:V2=VK:F2=1:K=KM
NEXT

IF F1=1 AND F2=1 THEN LINE(U1,V1)-(U2,V2)

RETURN

IF VX>H(U1) THEN LINE(U1,H(U1))-(U1,VX):RETURN
IF VM<L(UL) THEN LINE(U1,L(U1))-(0U1,VM)

RETURN

’Update H,L arrays

IF V1>H(U1l) THEN H(U1)=V1
IF V2>H(U2) THEN H(U2)=V2

IF Vi<L(Ul) THEN L(U1)=V1

IF V2<L(U2) THEN L(U2)=V2

IF ABS(U1-U2)<1 THEN RETURN
GOSUB 1370

FOR K=KM+1 TO KX-1
VK=VM+(VX-VM)* (K-KM) / (KX-KM)
IF VK>H(K) THEN H(K)=VK

IF VK<L(K) THEN L(K)=VK

NEXT K

RETURN

'Find left-most point of the line
KM=U1:KX=U02:VM=V1:VX=V2:IF KM>KX THEN KM=U2:KX=U1l:

VM=V2:VX=V1:RETURN
RETURN

’Find extreme values in U,V coordinates before scaling
b

IF U>UH THEN UH=U
IF U<UL THEN UL=U
IF V>VH THEN VH=V
IF V<VL THEN VL=V
RETURN

FIGURE 33 continued
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10 Z1=12
20 Z111=43
30 Z111111=48

100
102
105
106
108
110
112
120
122
124
1286
200
202
210
220
300
310
320
330
340
350
360
400
410
420
430
440

445
450
453
455

460
465
470
600
610
700
710
720
730
740
799
800
810

OPEN "lptl:" FOR OUTPUT AS #1
LG2=L0OG(2)

FOR W=.8 TO 0 STEP -.2

FOR Z=.8 TO O STEP -.2

PRINT #1,"Z=";Z;"w=";W;

PRINT #1," Y-AXIS"
PRINT #1,°" “ 8

FOR Y=-10 TO 10

PRINT #1, USING "###";Y;
NEXT Y

PRINT #1,

FOR X=1 TO -1 STEP -.1

PRINT #1,USING "#.#";X;:PRINT #1," "

FOR Y=-1 TO 1.05 STEP .1

ON ERROR GOTO 800

P1=(1+X)/2

P2=(1-X)/2

R1=P1*LOG(P1)+P2*¥LOG(P2)

P21=(1+2*%X+Y)/4

P22=(1-Y)/4

P23=(1-2*%X+Y) /4

R2=P21*LOG(P21)+2*P22%LOG (P22 ) +P23*LOG (P23)

P31=(1+3%X+3%Y+Z)/8

P32=(1+X-Y-2)/8

P33=(1-X-Y+Z)/8

P34=(1-3*X+3%Y-Z)/8

R3=P31%LOG (P31)+3*P32%LOG(P32)+3*P33%LOG (P33)
+P34%LOG (P34) ~

P41=(L+4XX+6XY+4*Z+W) /16:P43=(1+2%X-2%Z-W) /16

P42z (1-4XX+6XY-4*Z+W) /16:P4d=(1-2%X+2%Z-W) /16

P45=(1-2%Y+W) /16

R44=P41%LOG (P41)+P42%LOG (P42)+4%(P43%LOG(P43)
+P44XLOG (P44 ) ) +6XPA5XLOG (P45)

R4=R1+(Z1/2)*(R2-2%R1)+(2111/6)%(R3-3%R2+3%R1)

R4=R4+(Z111111/24)%(R44-4*R3+6%¥R2-4%R1)

R4=-R4/(LG2)

R=INT(100%R4+.5)

PRINT #1,USING "###";R;

NEXT Y

PRINT #1,

NEXT X

NEXT Z

NEXT W

END

PRINT #1," *x";

RESUME 700

FIGURE 34. PROGRAM GRID6
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APPENDIX F
UNITS and NOTATION

The following "reduced"” units are used in the text.

g8 = "reduced" free energy F = (F/NJ)
Br = "reduced" magnetic field B = (FoB/J)
Tr = "reduced" temperature T = (ksT/J)

J = the value of the exchange integral = (ksTc/Z).

For a Curie temperature = Te = 10568 oK (Fe) and Z = 12 for an

FCC lattice: J = 7.56 (10-3)e.v.
S(Joules /oK)
Entropy: - ---—————--- = S in "bits"
In 2

In the equations two notations have been used to

represent the same guantites.

either x

<H> =
or x(1)
either yij
<HE> =
or x(2)4j
either zijk
<HPERD> =

or x(3)ijk
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APPENDIX G
TABLE 2

EQUILIBRIUM FREE ENERGY §

Be = 0O
Te l Approximation
First | Second | Third(%) | Fourth

2 -6.000012 -6 . XXXXXX -5.991287 -5.734586
4 -6.010053 -6.0101866 -8.043771 . -6.009864
6 -6.118027 -6.122647 -6.118978 -6.123150
8 -6.466731 -6.500590 -6.503969 -6.449281
10 -7.172468 -7.298410 -7.319458 -7.375871
12 -8.317766 -8.567490 -8.599178 -8.653158
14 -9.704059 -9.918160 XXXXXXXXX -9.975911
186 -11.09035 -11.27774 -11.21078 -11.31896
18 -12.47665 -12.64323 -12.658670 -12.67498
20 -13.86294 -14.01288 -14.02387 -14.03782
3 - -6.001010 = =

5 - -6.043730 - -

7 = -6.268225 -6.269251 =

9 = -6.838270 -6.8474086 =

9.5 - -7.052020 - -
10.25 -7.434480 = =
10.5 - -7.579450 = =
10.75 - -7.733550 - -
10.85 - -7.797817 = =
10.9 - -7.8051860 = -
10.95 - -7.863579 - -

11 = -7.896960 -7.935181 =

13 - -9.241450 -9.2681860 =

15 = -10.597086 -10.61683 -

17 = -11.95988 -11.97504 =
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TABLE 3.

SOME CORRELATION COEFFICIENTS

.9948288
. 9847500
.9651874
.9945275

.9895800
.9330112
.9891984

.9030889
.9839292

.8581825
.8325000
.8276450
.7032843

.7070200
.7017475
.5307391

.6039199
.4117586

..6588523

.5350000
.4924544
.1001604

. 3400000
.3144164
.2064547

.2087749
.0430753

1.089163E-3
-1.298148E-3

-.1772807

9.9860E-5

6.244406E-2
9.670085E-2] -2

8.6007E-2

-1.988E-4

.161592E-2
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